
T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

WHERE’S i-TECHNOLOGY HEADED IN 2007? PAGE 52

PLUS...
Is Your
Mobile Safe?

j-Interop: An Open Source Library for
COM Interoperability Without JNI

RETAILERS PLEASE DISPLAY
UNTIL FEBRUARY 28, 2007

 JDJ.SYS-CON.COM VOL.11 ISSUE:12

No. 1 i-Technology Magazine in the World

JDJ.SYS-CON.COM VOL.11 ISSUE:12

No. 1 i-Technology Magazine in the World

 JDJ.SYS-CON.COM

The Development Power of
Open Source AJAX Tooling

SEE PAGE 51

�������������������������������������
������������������������

���

��

��

�������������

���

��

��

���

��

���
��

���������������������������
���

����������������������
����������

������������������
���������������������

���������������

������������������
����������������

��������
�������������

������������������
�����������

������

���������������
��������������

��������

������
�������

�������������������

� �� �
� �� �

JDJ.SYS-CON.com

s I write this, the stock price of Google,
Inc. just exceeded $500 for the first
time in the company’s still-brief (two-
year) history as a public company.

That gives the search colossus a market cap of
$150 billion, many times in excess of its physi-
cal assets – currently valued at $10.2 billion.
 Whether the latest surge in value is being
driven by the perception that Microsoft may
be losing its golden touch, or whether it is
Google’s sheer Web 2.0-style inventiveness
that is causing investors to pile into its stock,
matters not. What matters is that the company
that snapped up video-sharing site YouTube
for $1.65 billion now doesn’t seem quite so
profligate. Everything is relative.
 But why, many outside the industry are
wondering, is the company started eight
years ago in a Silicon Valley garage by Stanford
University graduate students Larry Page
and Sergey Brin already worth $150 billion,
when the one started 24 years ago by Andy
Bechtolsheim, Bill Joy, Vinod Khosla, and Scott
McNealy – a.k.a. Stanford University Network,
now Sun Micrososystems – is currently worth
just $19.5 billion?
 The answer, ironically, may lie in Andy
Bechtolsheim. Because not only is he famous
for being Sun’s “employee No. 1,” he is also
equally famous for being the author of a
$100,000 check that represented nearly one-
tenth of Google’s total capital when it was
founded, back in 1998 when it was still running
off the google.stanford.edu domain – in other
words, the Stanford University website.
 Although Bechtolsheim rejoined Sun in
February 2004 when it acquired the privately-
held company he co-founded, Kealia, based
in Palo Alto, California, Sun’s first “disruptive
innovator” is uniquely independent in spirit.
What he saw in Google back then, long before
it became The Big G, while very different from
what we see today, must have captivated him:
their front end of public search and advertising
algorithms, he must have realized, had unusual
and disruptive potential.
 Just five years later, another Sun employee,
Eric Schmidt, experienced a similar epiphany.
In a vision famously summarized later as “The
Network Is the Computer,” Schmidt wrote:
“When the network becomes as fast as the
processor, the computer hollows out and
spreads across the network.” Under such new

circumstances, Schmidt figured, profits would
flow very differently:

 “Not to the companies making the fastest
 processors or best operating systems, but
 to the companies with the best networks
 and the best search and sort algorithms.”

 Schmidt left Sun and, as we now know, gravi-
tated (via a stint at Novell) toward the Chairman-
ship of the very company that was by then most
clearly demonstrating the accuracy of his 2003
vision.
 So the answer to the $150BN vs $19.5BN
market cap question above is that Google is still
near the beginning of an Internet technology
cycle that could last an entire generation, while
Sun stands at the end of an i-Technology cycle
that is already 24 years old.
 But Bechtolsheim was once asked “So is the
game over?” and I have never forgotten his reply:
“Only if no one changes the game.”
 While the last few years may have been disap-
pointing for people who thrive on accelerated
progress in technology, the world is moving faster
again. Lest I be accused of puffing air into Bubble
2.0, though – especially since this is the month
when I typically poll so many minds for their i-
Technology predictions – it would perhaps be as
well if I were just to remind readers of technology
visionary George Gilder’s sobering words:

 “Amid the beckoning fantasies of futurism,
 the purpose of whatever comes next – like
 that of today’s petapede – will be to serve the
 ultimate, and still the only general-purpose,
 petascale computer: the human brain.”

 Google figured the Web’s first killer app. Web
search now assists us n times a day in thinking,
writing, and doing. And Google now helps us
with communicating and social computing too.
But if the network is the computer and the ulti-
mate computer is the human brain, then maybe
Java can help change the game by making the
human brain the network? After all, where Eric
Schmidt’s Google goes, can Jonathan Schwartz’s
Sun – with its humongous R&D budget – be so
very many steps behind?
 Enjoy the technologically diverse predic-
tions showcased in this issue. One thing alone is
certain about the future: like it or loathe it, we’re
all headed there together!

From the Editor

Is the Rise of Google
the End of the Game

for Everyone Else?
 Editorial Board
 Java EE Editor: Yakov Fain

 Desktop Java Editor: Joe Winchester

 Eclipse Editor: Bill Dudney

 Enterprise Editor: Ajit Sagar

 Java ME Editor: Michael Yuan

 Back Page Editor: Jason Bell

 Contributing Editor: Calvin Austin

 Contributing Editor: Rick Hightower

 Contributing Editor: Tilak Mitra

 Founding Editor: Sean Rhody

Production
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Research Editor: Bahadir Karuv, PhD

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 577 Chestnut Ridge Rd., Woodcliff Lake, NJ 07677

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc.,
577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677. Periodicals

postage rates are paid at Woodcliff Lake, NJ 07677 and additional
mailing offices. Postmaster: Send address changes to:
Java Developer’s Journal, SYS-CON Publications, Inc.,
577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.

©Copyright
Copyright © 2006 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Megan Mussa, megan@sys-con.com. SYS-CON Media
and SYS-CON Publications, Inc., reserve the right to revise, republish
and authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution

Curtis Circulation Company, New Milford, NJ

For List Rental Information:

Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com

Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant

Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered

trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Jeremy Geelan is

group publisher of

SYS-CON Media and

is responsible for the

development of new

titles and technology

portals for the

firm. He regularly

represents SYS-CON

at conferences and

trade shows, speaking

to technology

audiences both in

North America

and overseas.

jeremy@sys-con.com

Jeremy Geelan

A

3December 2006

5December 2006JDJ.SYS-CON.com

 The Development Power of
 Open Source AJAX Tooling

by Kevin Sawicki

Where’s i-Technology
Headed in 2007?

by Jeremy Geelan

52

30

j-Interop: An Open Source Library
for COM Interoperability Without JNI

by Vikram Roopchand

44

DECEMBER 2006 VOLUME:11 ISSUE:12

contents
JDJ Cover Story

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.
Periodicals postage rates are paid at Woodcliff Lake, NJ 07677 and additional
mailing offi ces. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.

Features

FROM THE EDITOR

Is the Rise of Google the End
of the Game for Everyone Else?
by Jeremy Geelan.................................3

VIEWPOINT

How Good Is Good Enough?
Code quality and the point of diminishing returns
by Nigel Cheshire.................................6

WIRELESS

Is Your Mobile Safe?
How to avoid the ‘blues’
 by Kanchan Waikar.................................12

CASE STUDY

The Challenges of Porting a Java ME
Application to Multiple Devices
Coping with idiosyncrasies, the unexpected,
and complexity
by Hayden Marchant.............................14

SERVICE DATA OBJECTS

What Is SDO?
Part One: The value of many of the facets of SDO
by Kelvin Goodson and Geoffrey Winn..............................34

DECOUPLING

Reducing Maintenance Costs
Through Systems Decoupling
Technological and functional decoupling
by Constantine Plotnikov and
 Vladimir Shraibman..............................38

DESKTOP JAVA VIEWPOINT

Ten Brilliant Years
by Joe Winchester.............................50

LABS

Oracle JDeveloper –
An I2DE Worth a Second Look
It’s never too late for a second chance
at a fi rst impression
Reviewed by Lucas Jellema..............................58

JSR WATCH

The 2006 JCP EC Elections Are Over
Meet the newly elected and re-elected members
by Onno Kluyt.............................62

18 by Andy Pardue

Features

 A pattern for improving
 database query performance

JDJ.SYS-CON.com6 December 2006

President and CEO:

 Fuat Kircaali fuat@sys-con.com

President and COO:

 Carmen Gonzalez carmen@sys-con.com

Senior Vice President, Editorial and Events:

 Jeremy Geelan jeremy@sys-con.com

Advertising

Vice President, Sales and Marketing:

 Miles Silverman miles@sys-con.com

 Robyn Forma robyn@sys-con.com

Advertising Sales Manager:

 Megan Mussa megan@sys-con.com

Associate Sales Manager:

Kerry Mealia kerry@sys-con.com

Lauren Orsi lauren@sys-con.com

Editorial

Executive Editor:

 Nancy Valentine nancy@sys-con.com

Production

Lead Designer:

 Tami Lima tami@sys-con.com

Art Director:

 Alex Botero alex@sys-con.com

Associate Art Directors:

 Abraham Addo abraham@sys-con.com

 Louis F. Cuffari louis@sys-con.com

Web Services

Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designers:

 Stephen Kilmurray stephen@sys-con.com

 Richard Walter richard@sys-con.com

Accounting

Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:

 Betty White betty@sys-con.com

Accounts Receivable:

 Gina DeTemple gina@sys-con.com

Customer Relations

Circulation Service Coordinator:

 Edna Earle Russell edna@sys-con.com

ntellectually everyone understands
that improving code quality is a
good thing. After all, we know bad
quality when we see it. (Anyone

old enough can cast his or her mind
back to the late ‘80s and Microsoft
Word for Windows 1.0.) But we also
know that there comes a point where
there’s a diminishing return on our
investment in code quality. How
much work would you put into track-
ing down a bug that’s only ever been
reported once by a user running on
OS/2 Warp?
 The problem
with code qual-
ity initiatives is
that we really
don’t know how
much effort to
put into them.
We have never
truly answered the question: how
much quality is enough?

Why Code Quality is Important
 The Standish Group famously
reports on the software industry’s
inability to deliver successful projects
on a regular basis. In 2004, it reported
that just 29% of software projects were
considered a “success.”
 Projects fail for a number of rea-
sons, and as far as the Standish survey
is concerned, that means either the
projects were completely canceled, or
that they were “challenged” because
they significantly overran time and/or
cost.
 There are many reasons that
projects are canceled or overrun, and
almost certainly the most common is
that the software just didn’t do what
it was supposed to – it didn’t conform
to requirements. That’s a hard prob-
lem to fix – and it’s an even harder one
to measure.
 Code quality, on the other hand,
which is probably the second largest
contributor to project failure, is much
easier to measure, and therefore easier
to manage. Yet, many development

teams waste time on rework cycles fix-
ing bugs that crop up in QA or produc-
tion that could have been caught and
fixed upstream, with relatively little
effort.
 A big part of the cause of that prob-
lem is that during the coding phase,
oftentimes the only measurement
we have available to track progress is
whether we hit the deadline or not.
Even if we monitor defect rates (it
may shock you to learn that not all
development teams do), we just don’t

have any meaningful
metrics by which to
manage the process
until it’s too late.
 Agile methods
help. Test-driven
development, where
unit tests are written
with, or even before

the code, and continuous integration
and test cycles flush out many bugs in
development before they get to QA.
 But fundamentally, managing
only to deadlines causes an accumu-
lation of “technical debt” – a term
coined by Ward Cunningham to de-
scribe the effect of all those decisions
to use a quick and dirty approach to
solving a problem, with the idea that
you’d come back and fix it later. Just
like financial debt, technical debt isn’t
necessarily a bad thing, especially
when an important deadline is loom-
ing. But like financial debt, if you have
too much of it, it can get out of control
and becomes very hard to pay back.

How Much Quality is “Enough”?
 Quality is a tradeoff between
cost and risk. If you ask most (inter-
nal or external) customers what level
of quality they’d like to see in their
software applications, they’ll likely
tell you “perfect” – i.e., zero defects.
Of course, that’s something of a trick
question, because you didn’t tell them
how much “perfect” would cost.

–continued on page 10

Viewpoint

How Good Is
Good Enough?

I

Nigel Cheshire is CEO of Enerjy

Software, a division of Team-

studio Inc. He oversees product

strategy and has been driving

the company’s growth since

he founded it in 1996. Prior to

founding Teamstudio, Inc., Nigel

was co-founder and principal of

Ives & Company, a CRM solutions

consultancy. He holds a Bachelor

of Science degree in computer

science from the University of

Teesside, England.

nigel_cheshire@enerjy.com

Nigel Cheshire
Guest Editor

Code quality and the point of diminishing returns

JDJ.SYS-CON.com10 December 2006

Viewpoint

–continued from page 6

 After a 1996 Fast Company article
on the Lockheed Martin group that
builds and maintains software for the
space shuttle program, that software
is often cited as the most expensive
code on the planet, line for line. I’m
not sure anyone really knows the
cost per line of the space shuttle
software (it’s been estimated at $1,000
per line), but we do know that (as of
1996) it took roughly 260 developers
to maintain 420,000 lines of code,
which comes out at about 1,600 lines
per person. That’s expensive – but the
approach seems to work: according
to the article, the previous three ver-
sions of the software had only a single
defect detected per release.
 Of course, a typical business
application isn’t controlling a space
shuttle (which, even in 1996 dollars,
cost $4 billion a pop, not to mention
the lives of a half-dozen astronauts
being at stake), and many develop-
ment organizations struggle with the
cost/risk equation. How much qual-
ity is enough for your organization?
For your application? How can we
even start to answer that question?
 Ideally, we should be able to
come up with a mathematical
solution. In probability terms, the
expected cost of failure would be
expressed as the cost of something
bad happening multiplied by the
probability that the bad thing will
happen. So, as you spend more
on increasing the quality of the
software, the probability of failure
comes down, reducing the expected
cost of failure.
 This approach becomes prob-
lematic in practice, because it’s hard
to measure the incremental cost of
increasing quality and the prob-
ability of failure. But, unless we (as
an industry) start to measure these
things, we’ll remain in the Dark Ages.

What Gets Measured
Gets Managed!
 So, what to measure? A good
place to start is the cost of fixing
a defect. Once you know the cost
of fixing a defect, and you start to
measure defect rates, you can as-
sess the return on the investment
spent on quality measures (which
should be driving defect rates
down).
 The cost to fix a defect depends
on many factors. Conventional
wisdom states that the earlier in
the software lifecycle a defect is
found and fixed, the lower the cost.
Of course that’s true, although
depending on the application, it
probably costs less to fix an ap-
plication in production now than
it did even a few years ago. (How
many times have you opened
up an application only to have it
ask if you want to automatically
download and install the latest and
greatest version?)
 There are other quality-related
metrics that can help get a handle
on how well code is being written.
Most development organizations
have a set of coding standards.
How many organizations measure
how well the standards are being
applied? Coding standards don’t
just tell you where to put your
curly braces. If applied consistent-
ly, they can have a real, measur-
able impact on code quality and
maintainability.
 There are a number of static code
analyzers available that help de-
velopment teams implement their
coding standards. And static code
analysis can go further than just
checking adherence to standards
– it can find bugs that would other-
wise slip through the compiler un-
detected (consider the old chestnut
of incorrect use of the “=” operator
in a conditional statement).

 Unit test activity is another
early indicator of software qual-
ity. Although it’s not perfect,
code coverage (the percentage of
executable lines of code exercised
by your unit test suite) is a good
measure of the effectiveness of
your unit tests. You have to keep in
mind of course that code coverage
isn’t the same as path coverage (in
other words, 100% code coverage
doesn’t mean that your code is bug
free!). But it’s still fair to say that,
up to a point at least, the higher
your code coverage percentage,
the better chance you have of
squeezing those bugs out.
 This is a great example of a
place to look closely at return
on investment. You should set a
realistic goal for code coverage. A
development team could spend
many hours trying to get the
coverage rate from 98% to 100%
– with very little return in terms of
the number of defects trapped in
development. Many of the better-
known open source projects show
coverage rates in the 50% to 70%
range, and I know for a fact that
many commercial projects sit at
about half that number.
 The important point here, to
roll out a well-worn adage, is
that you can’t manage what
you don’t measure. If you’re not
measuring defect rates at different
stages of the lifecycle, start now.
Take a look at some of the tools
available for static analysis and
code coverage and, more impor-
tantly, start to track those quality
metrics over time. Only when
you have sufficient data to ana-
lyze can you start to make some
decisions on how far to go with
your code quality initiatives,
and finally be in a position to
answer the question: how good
is good enough?

Only when you have sufficient data to analyze can you start
to make some decisions on how far to go with your

code quality initiatives”
“

Only when you have sufficient data to analyze can you start
to make some decisions on how far to go with your

code quality initiatives”
“ top MISCONCEPTIONS that drive

Meet the most misunderstood developer team in the world.

our Crystal Reports dev team crazy

Crystal Reports® is too expensive. Actually, the developer edition is just $5951 USD (or
upgrade for only $3151). Complimentary Crystal Assist support2 provided with purchase.

Crystal Reports doesn’t include a free runtime license. Not true, the developer edition
includes a free runtime license3 for each component engine.

Getting reports on the web is complex. False, the developer edition includes crystalreports.com4

and Crystal Reports Server5 to speed and simplify web reporting deployments.

Crystal Reports only works in Windows®. Not quite, whether you need to create or
deploy reports on Windows, Linux or Unix, we have a Crystal Reports technology for you.

Find out more at: www.businessobjects.com/devxi/misunderstood

1 Suggested retail price. 2 Complimentary access to support engineers and self-help. 3 Includes an unlimited runtime license for internal use of .NET, Java, and COM engines. 4 Includes ten named
user licenses. 5 Includes fi ve named user licenses. The Business Objects logo and Crystal Reports are trademarks or registered trademarks of Business Objects in the United States and/or other
countries. All other names or products referenced herein may be the trademarks of their respective owners. © 2006 Business Objects. All rights reserved.

JDJ.SYS-CON.com12 December 2006

e don’t forget to scan our PC
for viruses and worms but
we conveniently forget to
download a virus checker for

our mobile. Most of us are still under the
impression that mobiles are completely
secure, which isn’t true. There are a num-
ber of threats that can crash your mobile
handset. Since few people have suffered
from such harmful programs, mobile
attacks haven’t gotten much publicity.
In personal computers, viruses attack
through removable drives and Internet
attachments whereas M-viruses and
worms attack through SMS, downloadable
application files, Bluetooth, etc.
 We have very little knowledge about
such mobile attacks. There are many
mobile viruses that can even crash your
mobile handset. Having a Bluetooth facil-
ity in a mobile device makes it even more
vulnerable. Bluejacking, bluesnarfing, and
backdoor attacks are some Bluetooth at-
tacks. The attacker can access your contact
data, personal images, and SMS inbox
after making a Bluetooth connection with
your mobile.
 There are two “free” ways of sharing
information that are available with most
of the mobile handsets. These are infrared
and Bluetooth. Bluetooth offers better
coverage compared to infrared. Hence
there’s greater possibility of attack through
Bluetooth than infrared. Let’s look at some
of the popular Bluetooth attacks.

Bluetooth Attacks...
 The simplest one is bluejacking. It is the
process of sending anonymous messages
using Bluetooth technology. In bluejack-
ing we can send a message, a video file,
or an audio file. Bluejacking can’t harm
the destination mobile. When bluejacking
is done to advertise or spam the victim’s
inbox then it’s called bluespamming. In
bluespamming, the interloper sends spam
messages to all mobiles in its Bluetooth
range.
 So much for the “not so harmful”
attacks. Now let’s look at real Bluetooth
attacks. The most popular Bluetooth
threat is a bluesnarfing attack. Bluesnarf-
ing is dangerous because it can steal your

address book, your personal data, and do
n numbers of such harmful activities. A
bluesnarfing attack can take place from
any well-equipped Bluetooth-enabled
device. Bluesnarfing can update the
most sensitive data and doesn’t leave any
traces behind. Using bluesnarfing, the
attacker can update your address book. A
bluesnarfing attack can also set call for-
warding in train and cost you money. Then
there’s bluebugging – the attacker makes
calls from the victim’s mobile handset
remotely.
 In Bluetooth, the packet-size value is set
for different devices. There’s an attack that
uses this to try to crash the victim’s hand-
set. If a Bluetooth device gets a packet of
greater size than its allowed limit it crashes,
hangs, or sometimes simply reboots. This
attack is known as bluesmacking.

Viruses, Worms & Trojans…
 Other than Bluetooth attacks, there
are other threats like worms, viruses, and
Trojan horses.
 Let’s start with the first mobile Trojan
“Mosquit.a.” It doesn’t hurt your handset
but it costs you money. It’s basically a
mobile game that sends numerous SMS
messages to different numbers when
you’re busy playing the game. Then there’s
a Commwarrior virus that spreads either
through Bluetooth or MMS and attacks 60
series handsets. There’s a skulls Trojan that
disables all applications and replaces all
application icons with the image of a skull.
It’s basically a SIS application that replaces
all application software with wrong ver-
sions disabling basic functionality. And
there’s is a Trojan called “SymbOS.Locknut”
that can crash a victim’s handset. If you get
a call that displays the name “ACE” and if
you pick the call up, it can erase your IMEI
number and make your phone useless.
Then there’s a “Drever-C” Trojan that poses
as a security update and corrupts the boot
loader. So be careful downloading applica-
tions from the Internet.

How Can I Protect My Mobile?
• Don’t open untrustworthy applications
• Don’t pair your device with unknown

devices

• When entering a crowded zone, make
sure your Bluetooth is switched off

• Keep your mobile anti-virus updated

 In case viruses, Trojans or worms are
detected, anti-virus companies have
patches and updates. To protect mobile
handsets you have to keep your mobile
anti-virus updated. If you find that your
cell’s been attacked by some virus or Tro-
jan don’t reboot it. Some Trojans affect the
boot loader/boot data and rebooting will
make it hard to repair.

Conclusion
 After reading about the different kinds
of attack that can take place, you might
be worried about your cell’s security.
But we can still keep our mobiles safe by
having the appropriate anti-virus loaded
on them and keeping our Bluetooth on
only when needed. An option in our cell
phones lets us maintain a “Hidden/Invis-
ible” connection that refuses new Blue-
tooth connections, but some devices still
remain vulnerable. So keeping Bluetooth
on only when required is the only option
that remains. We can also refuse to accept
connection requests from unknown
devices.
 Well-known PC anti-virus companies
like Symantec and McAfee provide anti-
virus protection for mobiles.

References
• http://news.zdnet.co.uk/communica-

tions/wireless/ 0,39020348,39145881,00.
htm

• An Ethical guide to hacking mobile
phone by Ankit Fadia, Macmillan
publications

• http://www.antivirusprogram.se/
virusinfo/SymbOS.Locknut_3172.html

• http://www.viruslist.com/en/
analysis?pubid=200119916

• http://hoaxbusters.ciac.org/
HBMalCode.shtml

Dedications
 I would like to dedicate this article to my
best friends and my mom and thank my
friend Ms. Sneha Abraham for her valuable
suggestions.

Wireless

by Kanchan Waikar
Is Your Mobile Safe?

W

Kanchan Waikar is a

software professional

working with a multi-

national IT company

and much inclined

to mobile programming.

waikar.kanchan@gmail.com

How to avoid the ‘blues’

OPNET Panorama offers powerful analytics for rapid troubleshooting of complex
Java EE applications. Panorama quickly identifies how application, web, and database
servers are impacting end-to-end performance. With Panorama, you can pinpoint the
source of a problem, so time and money aren't spent in the wrong places.

The world’s most successful organizations rely on OPNET's advanced
analytics for networks, servers, and applications.

OPNET Technologies, Inc. 7255 Woodmont Avenue, Bethesda, Maryland 20814 phone: (240) 497-3000 • e-mail: info@opnet.com • NASDAQ: OPNT

© 2006 OPNET Technologies, Inc. All rights reserved. OPNET is a registered trademark of OPNET Technologies, Inc.

www.opnet.com/panorama

MAKE ANSWERS TO PERFORMANCE PROBLEMS COME TO YOU.

Register for an
Online Webinar

JDJ.SYS-CON.com14 December 2006

he familiar phrase attributed to
Java applications of “write once,
run everywhere” sadly does not
apply to applications developed

on Java ME.
 While the Java ME standard en-
sures that runtime environments are
consistent across devices, the many
idiosyncrasies that exist outside the
Java specification require that all ME
applications be tailored to each device.
The differences in behavior can range
from unexpected exceptions when
calling certain API calls to performance
issues in certain operations on the
device. These problems cause many
difficulties for developers, who have to
ensure that their applications will work
well on all required devices and to an
acceptable level.
 Fixing a bug on one device can
often cause a worse bug to emerge
on another. In turn, adding simple
features to an existing application
can turn into an inflated task due
to the unexpected behaviors that
some devices take on when doing
seemingly trivial operations. This
makes testing Java ME applications
that are being deployed on multiple
devices a very complicated task that
needs careful project planning to
cope with the unexpected and man-
age the large volume of platforms
on which to test.
 So porting a Java ME application
to multiple devices can be a daunting
task. In this article, we’ll discuss some
of the common challenges encoun-
tered when developing a Java ME ap-
plication designed to run on multiple
devices and some approaches to
overcoming them.

A View into the Java ME World
 For a thorough understanding of
the complexities of Java ME projects,
let’s walk through the lifetime of a Java
ME application project.

First Steps
 The typical Java ME application is gen-
erally developed against a standard Java
ME device. Usually it will be a middle-of-
the-range device, most probably selected
following the suggestions of the target
mobile operator.
 One of the first decisions that the
developer makes is selecting an IDE. A
few IDEs support Java ME application
development, NetBeans being the most
mature. In the last year, both Eclipse
and Intellij IDEA began to catch up and
released versions of their IDE with more
than sufficient support for Java ME de-
velopment. The IDE for a Java ME project
should be selected against the same
criteria as other Java projects – basically,
anything that helps the programmer with
productivity, while ensuring quality code.
Since the introduction of ant into the
mainstream Java programming world,
cute wizards/build utilities that certain
IDEs offer are less of a buying point than
they used to be.
 After selecting the relevant Java ME
emulator, the developer will tend to
spend a large chunk of his development
time testing the current status of the
application on the Java ME emulator, and
only towards the
end will the application be tested
on the actual device. Very often new bugs
will arise when testing on the device, so
deploying to the device should be done
as early and as often as possible.

Unit Tests
 As with all Java applications developed,
it’s imperative to write unit tests for the
Java ME application. This becomes even
more important when the number of de-
vices needing to be supported increases,
since unit testing will be one of the prin-
cipal methods of weeding out different
behavior in devices at an earlier stage in
the development cycle.
 The specific runtime environment in
which the unit tests are executed becomes
increasingly important as the number of
supported device increases. For the first
device it’s generally acceptable to run the
tests on the emulator most of the time,
and every now and then to run the tests
on the actual device.
 Since most Java ME applications are
heavily GUI-oriented, it’s imperative to
separate the layers of the application in
a typical MVC pattern. This way it will be
possible to unit test much of the Model
and Controller part of the application.
(Special attention should be paid to the
memory cost of each additional class
when the device has small JAR size restric-
tions. However, this is becoming less rele-
vant as most devices on the market today
have respectable JAR size capabilities.) If
this separation isn’t done, it will substan-
tially reduce the benefit of the unit tests
and you’ll have to rely heavily on manual
testing your application – something
you want to avoid at all costs, since each
device is, in essence, a different platform.
So, the need to undertake manual testing
should be reduced as much as possible in
these areas by covering this functionality
with unit tests.
 J2MEUnit is the natural choice for a
unit test framework. It’s based on the
popular JUnit framework and can be run
as a J2MEMIDlet suite.

Porting to Other Devices
 When the application is working at a
reasonable quality level, demands for sup-
port on extra devices usually roll in. At the

Case Study

by Hayden Marchant

The Challenges of Porting a
Java ME Application to Multiple Devices

T

Hayden Marchant is a

Software Engineer in the

Information Integration

Solutions group at IBM.

He has 10 years of experience

in software engineering.

Hayden has a 1st class honors

BA in mathematics from

Cambridge University,

England, and is a Sun

Certified Programmer.

hayden@il.ibm.com

Coping with idiosyncrasies, the unexpected, and complexity

15December 2006JDJ.SYS-CON.com

stage you might suddenly be presented with
a list of 20 devices you’ve never seen before,
with your customer inevitably asking, “How
long will it take to get it running on these?”
 This is the real challenge in Java ME
development – porting to multiple devices.
The challenges are multi-faceted. In the world
of the unknown, you have to understand the
cost of porting the application to each device
as early as possible, while always ensuring the
high quality of the application!

Get To Know Your Device
 To provide an accurate cost estimate for a
device, it’s to know your device. There are sev-
eral bits of information that you have to know.
Some of this information will be documented
on the Web, and some you’ll only be able to
discover by running tests on the device.
 Most device vendors have a Web site de-
voted to application developers. On these sites
you can generally find useful information,
whether it be in an official Developers Guide
published by the vendor, or in a post on the
site’s forum. At one end of the spectrum, there
are vendors that have sites with a large, active
community of developers, as well as great
documentation. At the other end, there are
vendors whose developer sites are either non-
existent or so poorly supported that they may
as well be non-existent. Table 1 shows some of
the larger device Web sites.
 You should aim to find out as much as pos-
sible about the following aspects of the device
from these external resources:
1. Which emulator to use
2. Developer Guides
3. I/O capabilities
4. UI specifications
5. API specifications
6. Supported JSRs
7. Memory limitations
8. Security/signing issues
9. Known issues

 Depending on the functionality of the
application, you’ll typically need a variety of
information for your device. Some of it will be
formal definitions and capabilities that can be
obtained from online resources.

War Stories
 The following are typical examples of prob-
lems that can occur on devices. I can truly say
that most devices have at least one war story,
albeit not as severe as some of these examples.

Requirement: Your application needs to read
and write up to 500KB of data to local storage
on the device. This capability is something
that can usually be discovered on the Web,
and can be extremely valuable in providing
estimates for particular devices.
Limitation A: According to the official Web
site, Device X can only hold 256KB in its RMS
(Record Management System, which is an API
for persistent storage for Java ME devices). To
support this device, an expensive change in
the product’s architecture might be required
in which data is saved to a remote server.
However, before believing the documenta-
tion, you run a quick check to confirm this
limitation.
Limitation B: According to the Web site,
Device X can hold 500KB. However, when
running the application, it works satisfactorily
until the amount of data saved on the device
reaches 150KB after which the application
crashes. This is an example of an undocu-
mented restriction. To support this device, re-
search will be required and possibly a change
in the product architecture.

Requirement: Your application displays a set
of graphic images that fit neatly on a 208*208
screen.
Limitation A: Device X’s screen dimensions
are only 200*200, which means that the im-
ages won’t fit on the device. To support it, a
new set of images will have to be created that
will fit on this smaller device. The application’s
image layout algorithm will also have to be
enhanced (if it ever existed).
Limitation B: Device Y’s screen dimensions
are big enough, but when the application
runs, besides it taking nearly 10 seconds to
paint the images to the screen, they appear
very strange. After a lot of painstaking research
and debugging, the device is discovered to be
notoriously slow at rendering images to the
screen and doesn’t support the exact format of
the current images. After generating very low-
resolution images and changing the device’s
image display algorithm, you manage to get
the time down to five seconds and the images
look reasonable.

Requirement: Your application gets incoming
messages through SMS messages received on
a specific port.
Limitation A: When Device X gets an SMS
message on this port, the application gets the
message correctly. Device X is considered a
new state-of-the-art device and has excellent
performance and API capabilities. Shortly
before releasing the application on this device,
it’s discovered that if two or more SMS mes-
sages are sent to the device within 10 seconds,
the application crashes and the device has to
be rebooted! This turns out to be a bug in the

device’s operating system
and the only workaround
is to develop an alternative
communication channel
using TCP/IP. This means
developing a server-side
component to manage this
new mode of messaging
plus a different cost-model
for the mobile provider to
handle this application’s
messaging.
Limitation B: Installing the application
frequently fails on Device Y. After days of
painstaking research, it’s discovered that if the
port number that the SMS messages come in
on is changed to a different range, the instal-
lation completes and the application works
fine. The mobile operator is perturbed at the
news of the change in port number since it
doesn’t usually support messaging over those
ports, and following this, there’s a substantial
amount of annoying politics to go through to
get the change approved.

Reducing Risk
 To decrease the element of surprise in port-
ing the application to a device, it’s advanta-
geous to discover as many of the problems as
early as possible. Many of these issues can be
discovered both in the online resources and
by running a thorough set of unit tests on your
suite.
 However, to add a greater level of protec-
tion, another level of testing framework can be
used that will expose many of the problems
mentioned above, which would otherwise be
discovered much later in the development
cycle. This testing framework is, in essence,
a tailor-made application that has several
sections to it. Each section should cover a large
area of functionality, like image rendering, key Table 1

Device Vendor Site
Motorola http://developer.motorola.com
Nokia http://www.forum.nokia.com
Samsung http://developer.samsungmobile.com
Sony Ericsson http://developer.sonyericsson.com

Figure 1 I/O testing menu Figure 2 SMS receive testing

Figure 5 System abilities testing

RMS capacity testingFigure 3 Screen properties testingFigure 4

JDJ.SYS-CON.com16 December 2006

Case Study

mappings, menu behaviors, internation-
alization, GUI, I/O, or performance, with
menu items that test each of these areas (see
Figures 1–5). These tests cover areas of the
application on a higher level than regular
unit tests since there are some areas where
automatic unit testing can’t be applied such
as performance issues and GUI errors.
 The testing framework can typically
contain several sections from which manual
testing of application behavior can be carried
out. A detailed test plan should accompany
the test framework so the tester understands
the success or failure of any particular test.
This test package, consisting of the test
framework together with the test plan, is an
excellent tool to have when initially analyzing
a device – it can make all the difference in
arriving at accurate time estimates.
 The testing framework should be updated
as new functionality is added to the applica-
tion. Just as important, whenever serious
problems are discovered in a device, new
tests should be added to detect the same
problems in future devices. Only this way is
it possible to add support for a large number
of devices in a scalable manner.
 With a good testing framework and unit
test suite, the development team should feel
significantly more comfortable in commit-
ting to new devices (see Figures 6).
 However, for any Java ME application
porting project to succeed, the customer
must always keep the priority of each device
in the back of its mind, since, for example,

it would be a bad idea for a mobile operator
to commit to two months of redesigning a
device that only covered 0.3% of its mobile
device market, where the other 99.7% work
well. On the other hand, if that device had
25% of the market, it might be the correct
decision to take.

Keep the Code Clean
 In the same way that a thorough level of
testing is required, it’s also very important to
keep the code base clean and easy to main-
tain. Without this, the code base can quickly
become very messy in direct proportion to
the number of devices supported. When each
device has slightly different behaviors, size
differences, etc., the code will slowly begin to
get scattered with # if preprocessor directives.
 However, it’s important to keep the
code clean of directives that refer to device
names. Instead, the directives should refer
to semantic capabilities of the application.
For example, Device Y requires a slightly
different address format in the communica-
tions module than all other devices due to its
using a different communications protocol.
Instead of having code like:

#if DEVICE==”Y”

address = formatDifferentAddress(address);

#endif

sendMessage(address,portNumber,content);

the code should read:

#if COMM_PROTOCOL==”XYZ”

address = formatDifferentAddress(address);

#endif

sendMessage(address,portNumber,content);

 The different behaviors should be
extracted out as capabilities, and devices
are attributed with these capabilities. For
each device there will be a configuration file
that contains details of the capabilities that
the device requires, which, at build time, is
translated into the correct preprocessor defi-
nitions. Table 1 illustrates an example device
capability file. Observe that some of the
capabilities are feature-based in that each
device is expected to have a different value,
like screen settings, and other capabilities
are the result of bugs in the system. For
example, a bug in the RMS writing module
on a certain device could have resulted in
special code that writes data at set intervals,
which results in the RMS_WRITE_INTER-
VAL_MS capability.

 Since ant is the most common way to
build Java applications, it’s recommended
that this file be a properties file (see Table 2).
 As with most tasks in the Java world, there’s
a tool that can help you manage device
capabilities. J2MEPolish is an advanced open
source build tool and GUI framework for Java
ME applications and currently has a database
of nearly 400 devices with a lot of predefined
capabilities. Another recently released open
source library, the J2ME Device DB project,
boasts capabilities similar to J2MEPolish and
is worth evaluating. There are also several
commercial packages available that address
these problems that can be found on the Web.

Flexible Builds
 Having a Java ME application that’s sup-
ported on a large number of devices means
that you have to make a large number of
builds when releasing versions for testing
or QA. Manually building devices might be
acceptable for a few devices, but when the
number increases, you’ll have to have a way
of batch building applications for all devices
or for a particular subset of devices. Again,
J2MEPolish has a good ant-based build
framework sufficient for most needs.
 However, when each customer needs
multiple languages, and possibly different
feature sets, the build process will get more
complicated. For each device there might
be different language options combined
with several different feature sets that have
to be built. The difficulty of managing which
configurations to build for which customer
becomes increasingly relevant and a solid,
flexible build is mandatory to carry the proj-
ect through this complexity

Conclusion
 Porting Java ME applications can be scary,
but with a lot of preparation and research,
Java ME applications can be successfully
ported to multiple devices. Fears about being
swamped by the unmanageable number of
problems that are encountered in different
devices can be silenced. The ME project,
which could so easily have ended in failure,
can now be tackled with the same confidence
that one has undertaking a regular Java
project.

References
• J2MEUnit – http://j2meunit.sourceforge.

net
• JUnit – http://www.junit.org
• J2MEPolish – http://www.j2mepolish.org
• J2ME Device DB project – http://j2me-

device-db.sourceforge.net

Device Vendor Site
ICON_SIZE 16
FONT_SIZE 7
COMM_PROTOCOL XYZ
SCREEN_WIDTH 128

SCREEN_HEIGHT 128

KEY_MAPPINGS NOKIA_STANDARD

ENABLE_SOFT_MENU_DOUBLE_CLICK False

RMS_WRITE_INTERVAL_MS 200

 Table 2

Figure 6 Testing architecture

JDJ.SYS-CON.com18 December 2006

oes this sound familiar? You have a domain object, per-
haps for reporting purposes, that’s built from a ton of JDBC
queries and it takes too long to load. Nothing else hap-
pens until this object is built, so it’s become a bottleneck.

Even worse, each of the queries is actually well tuned, so there isn’t
much to gain from modifying the queries themselves – there are
just too many of them. You don’t want to change (or can’t change)
your data model, so what can be done to alleviate this problem
short of a major redesign? There are several options like caching,
lazy loading, resource pooling. Another worthy option would be to
implement a variation of the concurrent query pattern.
 Concurrent queries are fairly simple to implement and even
simpler to describe. Rather than serializing a set of queries, one
after the other, waiting for one to complete before the next begins,
one would actually use threads to run sets of independent queries
simultaneously. Now, using threading for database I/O might
sound daunting or ill-advised, but the Java threads package is one
of the best, if not the best, I’ve had the pleasure of working with.
Plus, the new concurrency utilities supplied with Java 5 make us-
ing threading for database I/O much more feasible. The UML-ish
diagram in Figure 1 attempts to provide a pictorial representation
of what I hope to explain in the following paragraphs.
 Suppose a domain object is built from 200 queries that can
each run from execution to processing results in 100 milli-
seconds on average. Now 100ms isn’t too bad for a query, but
stacked end to end, the result would be up to 20 seconds to build
an object. Ouch. Now, suppose you could run up to fi ve of these
queries concurrently at any one time. In an example that will be
described later, I was able to take a similar scenario and increase
performance from 20+ seconds to build an object to 5+ seconds.
First, though, I’ll describe a simpler problem scenario and then
implement a solution using concurrent queries, making use of
JDBC, connection pooling, and Java 5 thread pools in an effort to
demonstrate the type of performance improvements this pattern
might render. Later on, I’ll cover another, more complicated
implementation of an object that’s built from several actual data-
base queries. Note: Full source code for these sample implemen-
tations is available on sourceforge.net.

A Serialized Baseline Sample Application
 First, let’s look at the usual case for building objects from
database queries. For the following example, a user-defi ned
sleep function was created in a Postgres database (using Postgres
magic that I found on the Internet) that could be called as

select sleep(N) where N is the number of seconds to sleep. After
sleeping for the seconds indicated in the argument the number
of seconds slept is returned back as a result. We’ll do this with a
class called SleepyObject in Listing 1.
 This is a fairly standard JDBC query class that selects the
sleep(N) function for the number of seconds desired and pro-
cesses the ResultSet, which simply contains an integer indicat-
ing the number of seconds requested to sleep. So, if you “select
sleep(1),” the result of that query will be 1. Effectively, the sleep
function mimics a query that takes N seconds to complete. In the
serialized example (Example1.java), an array of fi ve SleepyObjects
is created. Upon creation, each SleepyObject selects the sleep(N)
function via JDBC and processes the result. This example creates
an array of SleepyObjects then iterates over that array, printing
out the return value from the call to the sleep function. Then,
the number of seconds it took to execute the entire exercise is
printed. Since this sample creates JDBC objects in the usual way,
the second SleepyObject isn’t created until the fi rst object is fully
created (e.g., fi nished with its sleep(N) query), and so on. So, in this
example, since each SleepyObject sleeps 2, 1, 2, 2, and 1 seconds,
respectively, the entire application must take at least eight seconds
plus overhead to run, as indicated in the output below. This is
Example1.java - a serialized example.

package net.sourceforge.concurrentQuery.article.serialized;

import java.sql.SQLException;

public class Example1 {

 public Example1() {}

 public static void main(String[] args) throws SQLException {

 long start = System.currentTimeMillis();

 SleepyObject[] sleepyObjects = { new SleepyObject(2),

 new SleepyObject(1),

 new SleepyObject(2),

 new SleepyObject(2),

 new SleepyObject(1)

 };

 int i = 1;

 for (SleepyObject sleepyObject : sleepyObjects) {

 System.out.println(“SleepyObject “ + i++ + “

D

Andy Pardue is a senior

software developer who

has specialized in the

medical software indus-

try for over 15 years, 11

years as a telecommuter

from his home offi ce in

Mesquite, Texas.

 andypardue@gmail.com

oes this sound familiar? You have a domain object, per- select sleep(N) where N is the number of seconds to sleep. After

D

by Andy Pardue

Feature

A pattern for improving database query performance

19December 2006JDJ.SYS-CON.com

returned “

 + sleepyObject.getValue());

 }

 long end = System.currentTimeMillis();

 System.out.println(“took: “ + new Double(end - start) /

1000 + “ seconds”);

 }

}

 The following is output from Example1.java.

run-example1:

 [java] query is: select sleep(2)

 [java] query is: select sleep(1)

 [java] query is: select sleep(2)

 [java] query is: select sleep(2)

 [java] query is: select sleep(1)

 [java] SleepyObject 1 returned 2

 [java] SleepyObject 2 returned 1

 [java] SleepyObject 3 returned 2

 [java] SleepyObject 4 returned 2

 [java] SleepyObject 5 returned 1

 [java] took: 8.54 seconds

An Implementation Using Concurrent Queries
 Next, we’ll build on the same example, but this time we’ll use
a class called ConcurrentSleepyObject to replace SleepyObject.
The ConcurrentSleepyObject will use a singleton implementa-
tion of the concurrent query pattern to invoke queries and reap
the results as seen in Example2.java below.

package net.sourceforge.concurrentQuery.article.concurrent;

import java.sql.SQLException;

public class Example2 {

 public Example2() {}

 public static void main(String[] args) throws SQLException {

 long start = System.currentTimeMillis();

 ConcurrentSleepyObject[] concurrentSleepyObjects = {

 new ConcurrentSleepyObject(2),

 new ConcurrentSleepyObject(1),

 new ConcurrentSleepyObject(2),

 new ConcurrentSleepyObject(2),

 new ConcurrentSleepyObject(1)

 };

 int i = 1;

 for (ConcurrentSleepyObject concurrentSleepyObject :

 concurrentSleepyObjects) {

 System.out.println(“ConcurrentSleepyObject “ + i++

 + “ returned “ + concurrentSleepyObject.getValue());

 }

 long end = System.currentTimeMillis();

 System.out.println(“took: “ + new Double(end - start) / 1000 +

 “ seconds”);

 }

}

Both Example1 and Example2 build an array containing
fi ve objects, each invokes a database sleep for the same
amount of time. However, in this second example, by using
an implementation of the concurrent query pattern, the
same JDBC calls can be executed in less than half the time
(2.86 seconds versus 8.54). This is because we have fi ve que-
ries running at once rather than one at a time. In this exam-
ple, each of the fi ve queries is run and resolved within its
own thread. So, rather than the total execution time being
the sum of all queries plus overhead, as in the fi rst example,
the total execution time is roughly the amount of time it
takes for the longest query to run plus overhead. Here is the
output from Example2.java shown below.

run-example2:

 [java] query is: select sleep(2)

 [java] query is: select sleep(1)

 [java] query is: select sleep(2)

 [java] query is: select sleep(2)

 [java] query is: select sleep(1)

 [java] ConcurrentSleepyObject 1 returned 2

 [java] ConcurrentSleepyObject 2 returned 1

 [java] ConcurrentSleepyObject 3 returned 2

 [java] ConcurrentSleepyObject 4 returned 2

 [java] ConcurrentSleepyObject 5 returned 1

 [java] took: 2.86 seconds

 To accomplish this, a class called ConcurrentQu-
eryThreadImpl.java was created as a singleton class that
encapsulates:
1. The number of active queries that can run at once (five

for purposes of this example).
2. A ConcurrentHashMap to hold a list of running

query threads and a reference to the domain object
interface to be used to reap the results of the query.
ConcurrentHashMap is a thread-safe HashMap available
in the java.util.concurrent package.

3. A second ConcurrentHashMap to hold a list of queries
and domain object interfaces of queries that couldn’t be
immediately submitted because the maximum number of
threads (five) was already running.

4. The needed JDBC code to execute the queries.

Figure 1

domain objectj
ConcurrentQuery
Implementation

Q y
p

Thread-safe list
of queries and
domain objects

queued queries

Query Thread 1
Query Thread 2
Query Thread 3
Query Thread N

running threads

JDBC Connections

RDEMS

Object is complete
and ready for use

runQuery()

run Query Thread

threadHasCompleted(IsAlive())

submit no available threads

processSQLResults()

set IsReaped()=true

If query has not completed

wait for results

JDJ.SYS-CON.com20 December 2006

 The code fragment in Listing 2 shows the initialization of
the ConcurrentQueryThreadImpl class.
 The interface CanResolveAConcurrentQuery, referenced
in the ConcurrentQueryThreadImpl class, is used in the Con-
currentHashMaps and simply defines two methods that must
be implemented by a participant in a concurrent query (e.g.,
ConcurrentSleepyObject), one to process the SQL results
and another (isReaped())method that the ConcurrentQuery
implementation can use to indicate to the object that it has
processed its SQL results and is ready to go. Below is CanRe-
solveAConcurrentQuery.java.

package net.sourceforge.concurrentQuery.article.concurrent;

import java.sql.ResultSet;

import java.sql.SQLException;

public interface CanResolveAConcurrentQuery {

 boolean processResultSet(ResultSet rs) throws SQLException;

 void setReaped(boolean isReaped);

}

 By implementing this interface, the ConcurrentSleepyOb-
ject can participate in concurrent queries. Notice that in the
getValue() method the query object needs to make sure that
it has been “reaped” (e.g., it either processed its results or
threw an SQLException) and if not, the object must call the
waitForAllQueriesToComplete() method of the Concurrent-
QueryThreadImpl singleton, which submits and processes all
outstanding queries. See getValue() method of Concurrent-
SleepyObject shown in the following.

public class ConcurrentSleepyObject implements CanResolveA-

ConcurrentQuery {

...

 public int getValue() throws SQLException {

 if (!reaped) {

 ConcurrentQueryThreadImpl.getInstance().waitForQu-

eriesToComplete();

 }

 return value;

 }

...

 This is done so that the object can be sure that its results
have been processed before it can be used. The waitForAl-
lQueriesToComplete() method won’t return until all running
and queued queries are finished. This way, our object can be
sure that its results have been processed before continuing. A
better option, though, would be to assign a token, or cookie,
to each participant in a concurrent query that can be used
by the object to ensure that results are ready. This way, if the
results aren’t ready yet, the object won’t have to wait for all the
other queries to finish, but could be notified when its query
has completed, perhaps moving it to the front of the queue, if
necessary. To keep things simple, I opted for the main –strain-
and-brute-force approach of waiting for all queries to finish.
The complete source for the ConcurrentSleepyObject class is
in Listing 3.

Details of the ConcurrentQuery Implementation
 As mentioned, this implementation uses two lists to
manage queries. The first list is the threads that are cur-
rently running SQL queries and can’t surpass the configured
value for the application. Since each thread corresponds to
a JDBC connection, you want to be careful not to set this
value too high. I’ve used five for this example. The second
list is the queued queries that haven’t been able to run
because the running thread list was full when the query was
submitted via the runQuery() method. See Listing 4.
 In the ConcurrentQueryThreadImpl class, the runQue-
ry() method first checks to see if any previously submit-
ted query threads have finished and need to be reaped.
This is important because the list of running threads is
constrained so that too many queries can’t run at once
and overload the database server. So we want to get these
threads processed and off the list first to make room for
more query threads to be invoked. Once a query thread
has been reaped then there’s room on the list for another
query thread. If there’s room on the running threads list
and there are queued queries waiting to be submitted (e.g.,
queries that previously had to wait because the running
thread list was full) then they get submitted first before the
query being passed to the runQuery() method. The query
being passed in would then have to go onto the end of the
list. Otherwise, if there’s room on the running threads list
and no queued queries, the caller’s query will be immedi-
ately submitted.
 The ConcurrentQueryThreadImpl class contains a private
QueryThread class that extends Thread. This class starts a
new thread, runs the SQL query, and holds onto the results
(or an SQLException, if one occurred) until the Concurrent-
QueryThreadImpl processes the results and removes the
thread from the list. See Listing 5.
 Once the ConcurrentQueryThreadImpl notices that
the QueryThread is finished, it calls the processResults()
method of the CanResolveAConcurrentQuery interface
reference that the domain object has implemented, marks
the processed object as reaped via the same interface, and
removes the QueryThread from the list of running threads.
Besides the getInstance() method that gives visibility into
the singleton class, the public user interface for this class
simply consists of the runQuery() and waitForAllQueriesTo-
Complete() methods.

A Variation Using Thread Pools
 In situations where concurrent queries can be used
extensively, there might be some uneasiness about starting
a new thread for each query and having it exit when that
query is completed. In such cases, I’d recommend using a
callable thread pool available in the java.util.concurrent
package. Threads of this type would have an advantage over
normal threads in that a) they can be pooled, b) they can
throw an exception, and c) they can return a result. As an
exercise, I’ve implemented a callable thread pool version of
the QueryThread class that the ConcurrentQueryThread-
Impl class can use to run queries. This class, a private class
named QueryThreadPool, implements the Callable inter-
face, instantiates a thread pool the size of the constraint of
the maximum number of queries we want to have running

Feature

��

��

AJAX for Java

������������������������������������
���
���
�������������������������������������

�������������������������������

����������������������������������
�������������������������������������
���
���

���

�
�
�
�

JDJ.SYS-CON.com22 December 2006

at once, and puts the main unit of work of the thread inside
the call() method. The source for the QueryThreadPool class
is in Listing 6.
 To make it easier to switch between the two threading
models, a simple interface was extracted from the original
QueryThread implementation named IsAConcurrentQu-
eryThreadRunner, mandating the following methods: getRe-
sultSet(), getSQLException(), and isAlive(). See IsAConcur-
rentQueryThreadRunner.java below.

package net.sourceforge.concurrentQuery.article.concurrent;

import java.sql.ResultSet;

import java.sql.SQLException;

public interface IsAConcurrentQueryThreadRunner {

 public ResultSet getResultSet();

 public SQLException getSQLException();

 public boolean isAlive();

}

 This interface is used on the ConcurrentHashMap lists that
hold the references to the running query threads. Now, it’s pos-
sible to change a few references of the QueryThread to the Qu-
eryThreadPool and vice-versa to switch between the two thread-
ing models. Of course, a factory to create the threading model
based on a properties file would be more efficient, but outside
the immediate scope of our discussion. The entire source for the
ConcurrentQueryThreadImpl class is in Listing 7.

A Second, More Robust Implementation
 To demonstrate use further, I’ve put together a more elabo-
rate implementation of this pattern that builds a large object
from real database queries. This database has one table that
lists cities with large populations, their districts (or states), and
the countries in which they reside. For this example, I have
built a single object that contains a list of countries that have
more than 75 cities. The CountryList object contains a list of its
districts, each district contains a list of its cities. All of this is in
one big object. Once it’s built, the results are printed. Below is
Partial output from printing the CountryList object.

=== stuff deleted ===

 Country Code: USA

 District: Alabama

 city name: Birmingham, population: 242820

 city name: Huntsville, population: 158216

 city name: Mobile, population: 198915

 city name: Montgomery, population: 201568

 District: Alaska

 city name: Anchorage, population: 260283

=== stuff deleted -==

 Once built, this object contains 11 countries, 350 districts
each associated with its country, and 2,233 cities each associ-
ated with its district. I’ve implemented the solution using a

concurrent query pattern that uses a factory to create a con-
current query object with the desired threading model (normal
threads, callable thread pool, or runnable thread pool). Then I
created a factory broker singleton class that reads the thread-
ing model, JDBC settings. and the number of connections from
a properties file and invokes the proper factory to create the
concurrent query object. If I use one connection, thus simulat-
ing a serialized approach, it takes about 30 seconds on average
to construct this object (this doesn’t include the amount of
time needed to print the results). If I use two connections
concurrently, the process of constructing the object takes only
about 7.7 seconds. Using three connections gets the time down
to 5.2 seconds. Your mileage may vary and you will eventually
hit a point of diminishing returns where adding more concur-
rent connections won’t improve performance.
 Consider the CountryList domain class in Listing 8 that
accepts an argument for the number of cities, builds a list
of countries that have more than that number of cities, and
then constructs a list of the districts in each country.
 Note that the processResultSet method is defined in the
ResolvableFromConcurrentQuery interface. Also, the Dis-
trictList class, which is instantiated by the CountryList ob-
ject, is a domain object that participates in concurrent que-
ries and will invoke a CityList object, yet another concurrent
query domain object. And all of this happens using threaded
queries and queued queries on lists to manage them. Notice
too that in this implementation that I’ve chosen to have the
domain objects explicitly call the resolve() method of the
ConcurrentQuery object rather than build a notification
into the interface as the previous implementation did with
the isReaped() method. The resolve() method waits for all
the running threads and queued queries to complete before
continuing. The tradeoff is whether or not it’s more feasible
to have each getter in the domain object check to be sure
it’s reaped or whether it’s better to have the domain objects
explicitly wait to be resolved.
 So, in general, a concurrent query implementation will
likely have a mechanism to invoke a SQL query without
waiting for the SQL results, and a way to ensure that an
object is properly built before it’s used – either by having
the business logic explicitly wait for all results to finish after
invoking some concurrent queries, or by having the domain
object itself recognize that it hasn’t processed its SQL results
and requests to wait for those results.

When To Use Concurrent Queries
 I wouldn’t propose using a concurrent query pattern as a
general rule for all database access because of resource con-
straints, but I believe there are many applications that could
benefit from occasional use. This pattern fits most easily
with POJOs that already build and execute and process re-
sults for their own SQL queries. The following are character-
istics of applications that might benefit:
• Database and server resources are adequate and the data-

base server isn’t already under duress.
• Your application is already using JDBC queries.
• Your application controls when queries are run and when

the results are processed (e.g., not using an external tool
for building, managing, and running queries).

Feature

23December 2006JDJ.SYS-CON.com

• You’re not having issues with the number of connections
available to the database server.

 If so, then it might be feasible to implement this pattern.
Remember, you can always configure the number of queries
allowed to run concurrently to one, essentially running your
application as a regular serialized JDBC query/result model,
if resource constraints become an issue.

Conclusion
 Such a simple pattern can be implemented in a few hours
and the results might help a project over some bumpy per-
formance issues. A few items worth noting that didn’t seem
to fit in anywhere else:
• Concurrent queries don’t have to be implemented using

threads. Since most database servers are multithreaded
themselves they usually return control back to the client
after a query has been parsed and submitted while the
database server works on the query. If you hold the con-
nection then you can check for the results later without
having to use threads (e.g., set a timeout to zero and
check for a result). Of course, the threading approach is
pretty efficient and I personally like that model better.
While it’s entirely possible to use JDBC and hold the con-
nection without immediately processing the result, the
de facto standard for Java/JDBC development, up to this
point, has been to submit queries and process results in
one operation. But, when using a language or platform
whose threading package isn’t trustworthy then this pat-
tern can be implemented without threads. In a previous
project, I implemented a variation of this pattern using C
and ODBC without threads.

• If you access a singleton concurrent query implementa-
tion from threaded clients then you might need to syn-
chronize methods or blocks strategically in the concur-
rent query singleton.

• I’ve never implemented this pattern with objects that
insert, update or delete data, but I suppose it could be
done. I’ve never implemented this pattern to participate
in a transaction, but that too should be possible.

• Besides building query-intensive objects faster, another
potential use for this pattern could be in improving
front-end user response time by pre-fetching data. For
instance, suppose that after a user logs in to your applica-
tion, his likely next choice would be to pull a list of active
orders, view a list of products, or view their account set-
tings. Concurrent queries could be used to build objects
for all three potential choices immediately after the user
logs in. By the time the user decides on which option to
choose, the domain objects would be immediately avail-
able, or at least closer to being available than if the object
started to be constructed after the user made a choice.
Of course, an expiration date on the object would be in
order in case the user takes 30 minutes to make a choice.
Sure, you might end up building an object that you don’t
use, but I’ve had several instances where the perceived
user response time was more valuable than the applica-
tion resources. I don’t like fast food restaurants that have
my burger made before I actually order it, but I’m not as
picky about my data.

For More Information
 All of the sources found here, plus the source for the
implementation of the list of countries example is available
on sourceforge.net. Since concurrent query is more of a pat-
tern than a packaged solution, the project on sourceforge.
net is just a sample implementation intended for perusal.
Sources are available for download from http://sourceforge.
net/projects/concurrentquery.
 The SleepyObject (ant target: run-example1) and
ConcurrentSleepyObject (ant target: run-example2) are
found in the article package and use a Postgres database.
View the readme for instructions on creating the sleep
function in Postgres. Other database servers might have
a built-in function (e.g., waitfor in MS SQL) that could be
substituted.
 The country list example (ant target: run-ModelDriver)
uses a MySQL database server. The DDL and data to create
the city table is included and instructions for loading are also
in the readme file.

Listing 1: SleepyObject.java

package net.sourceforge.concurrentQuery.article.serialized;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import net.sourceforge.concurrentQuery.test.pool.JDCConnectionDriver;

public class SleepyObject {

 private String jdbcDriver = “org.postgresql.Driver”;

 private String jdbcURL = “jdbc:postgresql://localhost:5432/

test?user=postgres”;

 private String jdbcPoolURL = “jdbc:jdc:jdcpool”;

 private String jdbcUser = “postgres”;

 private String jdbcPasswd = “postgres”;

 private int value = 0;

 public SleepyObject(int sleepSeconds) throws SQLException {

 try {

 Class.forName(jdbcDriver).newInstance();

 } catch (Exception e) {

 throw new SQLException(e.getMessage());

 }

 try {

 new JDCConnectionDriver(jdbcDriver, jdbcURL, jdbcUser,

 jdbcPasswd);

 } catch (Exception e) {

 throw new SQLException(e.getMessage());

 }

 create(sleepSeconds);

 }

JDJ.SYS-CON.com24 December 2006

Feature

 private void create(int sleepSeconds) throws SQLException {

 Connection connection = DriverManager.getConnection(jdbcPoolURL,

 jdbcUser, jdbcPasswd);

 Statement statement = connection.createStatement();

 String sql = “select sleep(“ + sleepSeconds + “)”;

 System.out.println(“query is: “ + sql);

 if (statement.execute(sql)) {

 ResultSet resultSet = statement.getResultSet();

 if (resultSet.next()) {

 value = resultSet.getInt(1);

 }

 connection.close();

 }

 }

 public int getValue() {

 return value;

 }

}

Listing 2: ConcurrentQueryThreadImpl.java properties and initialization

public class ConcurrentQueryThreadImpl {

 private String jdbcDriver = “org.postgresql.Driver”;

 private String jdbcURL = “jdbc:postgresql://localhost:5432/

test?user=postgres”;

 private String jdbcPoolURL = “jdbc:jdc:jdcpool”;

 private String jdbcUser = “postgres”;

 private String jdbcPasswd = “postgres”;

 private static ConcurrentQueryThreadImpl instance = null;

 private final int numberOfConcurrentQueries = 5;

 private static ConcurrentHashMap<CanResolveAConcurrentQuery,

 String> queuedQueries;

 private static ConcurrentHashMap<QueryThread,

 CanResolveAConcurrentQuery> runningThreads;

 public static ConcurrentQueryThreadImpl getInstance() throws

SQLException {

 if (instance == null) {

 instance = new ConcurrentQueryThreadImpl();

 queuedQueries = new ConcurrentHashMap<CanResolveAConcurrent-

 Query, String>();

 runningThreads = new ConcurrentHashMap<QueryThread,

 CanResolveAConcurrentQuery>();

 }

 return instance;

 }

 private ConcurrentQueryThreadImpl() throws SQLException {

 try {

 Class.forName(jdbcDriver).newInstance();

 } catch (Exception e) {

 throw new SQLException(e.getMessage());

 }

 try {

 new JDCConnectionDriver(jdbcDriver, jdbcURL, jdbcUser,

 jdbcPasswd);

 } catch (Exception e) {

 throw new SQLException(e.getMessage());

 }

 }

== stuff deleted ==

Listing 3: ConcurrentSleepyObject.java

package net.sourceforge.concurrentQuery.article.concurrent;

import java.sql.ResultSet;

import java.sql.SQLException;

public class ConcurrentSleepyObject implements CanResolveAConcurrentQuery {

 private int value = 0;

 private boolean reaped = false;

 public ConcurrentSleepyObject(int seconds) throws SQLException {

 create(seconds);

 }

 private void create(int sleepSeconds) throws SQLException {

 ConcurrentQueryThreadImpl.getInstance().runQuery(“select sleep(“

 + sleepSeconds + “)”, this);

 }

 public int getValue() throws SQLException {

 if (!reaped) {

 ConcurrentQueryThreadImpl.getInstance().waitForQueriesTo-

 Complete();

 }

 return value;

 }

 // implemented method to process JDBC results

 public boolean processResultSet(ResultSet rs) throws SQLException {

 if (rs.next()) {

 value = rs.getInt(1);

 return true;

 } else {

 return false;

 }

 }

 public void setReaped(boolean isReaped) {

 this.reaped = isReaped;

 }

}

Listing 4: Code fragment of ConcurrentQueryImpl.java

public class ConcurrentQueryThreadImpl {

…

public void runQuery(String query, CanResolveAConcurrentQuery domainObject)

throws SQLException {

 Connection connection = DriverManager.getConnection(jdbcPoolURL);

 // reap any results from completed threads, if any

 reapCompletedThreads();

 // before we start a QueryThread for this query, letʼs submit any

 queries

 // that have already been queued

 while (!queuedQueries.isEmpty()

 && runningThreads.size() < numberOfConcurrentQueries) {

 CanResolveAConcurrentQuery queuedDomainObject

 = (CanResolveAConcurrentQuery)queuedQueries.keySet().

 toArray()[0];

 String queuedQuery = queuedQueries.get(queuedDomainObject);

 queuedQueries.remove(queuedDomainObject);

 runningThreads.put(new QueryThread(connection, queuedQuery),

 queuedDomainObject);

 }

25December 2006JDJ.SYS-CON.com

 // now, either start a thread for this query or add it to the

queued queries.

 if (runningThreads.size() < numberOfConcurrentQueries) {

 runningThreads.put(new QueryThread(connection, query), domain-

Object);;

 } else {

 queuedQueries.put(domainObject, query);

 }

 }

 public void waitForQueriesToComplete() throws SQLException {

 while (!queuedQueries.isEmpty() || !runningThreads.isEmpty()) {

 do {

 reapCompletedThreads();

 } while (!runningThreads.isEmpty());

 while (!queuedQueries.isEmpty()

 && runningThreads.size() < numberOfConcurrentQueries)

{

 CanResolveAConcurrentQuery queuedDomainObject

 = (CanResolveAConcurrentQuery)queuedQueries.key-

Set().toArray()[0];

 String queuedQuery = queuedQueries.

get(queuedDomainObject);

 queuedQueries.remove(queuedDomainObject);

 runningThreads.put(new QueryThread(

 DriverManager.getConnection(j

dbcPoolURL),

 queuedQuery),

 queuedDomainObject);

 }

 }

 }

…

Listing 5: Implementation of a QueryThread private class in ConcurrentQueryThreadImpl

public class ConcurrentQueryThreadImpl {

...

private class QueryThread extends Thread implements IsAConcurrentQueryThre

adRunner {

 private Connection connection;

 private String query;

 private ResultSet resultSet;

 private SQLException sqlException;

 private QueryThread() {}

 public QueryThread(Connection connection, String query) {

 System.out.println(“(QueryThread) query is: “ + query);

 this.connection = connection;

 this.query = query;

 start();

 }

 public void run() {

 Statement statement = null;

 try {

 statement = connection.createStatement();

 if (statement.execute(query)) {

 resultSet = statement.getResultSet();

 connection.close();

 }

 } catch (SQLException e) {

 sqlException = e;

 }

 }

 public SQLException getSQLException() {

 return sqlException;

 }

 public ResultSet getResultSet() {

 return resultSet;

 }

 };

...

Listing 6: QueryThreadPool private class

private static ExecutorService executor = Executors.newFixedThreadPool(numb

erOfConcurrentQueries);

 private class QueryThreadPool implements IsAConcurrentQueryThreadRunne

r, Callable {

 private Connection connection;

 private String query;

 private ResultSet resultSet;

 private SQLException sqlException;

 private Future<?> future;

 private QueryThreadPool() {}

 public QueryThreadPool(Connection connection, String query) {

 System.out.println(“(QueryThreadPool) query is: “ +

 query);

 this.connection = connection;

 this.query = query;

 future = executor.submit(this);

 }

 public ResultSet call() throws SQLException {

 Statement statement = null;

 try {

 statement = connection.createStatement();

 if (statement.execute(query)) {

 resultSet = statement.getResultSet();

 connection.close();

 }

 } catch (SQLException e) {

 sqlException = e;

 throw new SQLException(e.getMessage());

 }

 return resultSet;

 }

 public SQLException getSQLException() {

 return sqlException;

 }

 public ResultSet getResultSet() {

 return resultSet;

 }

 public boolean isAlive() {

 return !future.isDone();

 }

 };

Listing 7: ConcurrentQueryThreadImpl.java

package net.sourceforge.concurrentQuery.article.concurrent;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

JDJ.SYS-CON.com26 December 2006

Feature

import java.sql.SQLException;

import java.sql.Statement;

import java.util.concurrent.Callable;

import java.util.concurrent.ConcurrentHashMap;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

import java.util.concurrent.Future;

import net.sourceforge.concurrentQuery.test.pool.JDCConnectionDriver;

public class ConcurrentQueryThreadImpl {

 private String jdbcDriver = “org.postgresql.Driver”;

 private String jdbcURL = “jdbc:postgresql://localhost:5432/

test?user=postgres”;

 private String jdbcPoolURL = “jdbc:jdc:jdcpool”;

 private String jdbcUser = “postgres”;

 private String jdbcPasswd = “postgres”;

 private static ConcurrentQueryThreadImpl instance = null;

 private static final int numberOfConcurrentQueries = 5;

 private static ConcurrentHashMap<CanResolveAConcurrentQuery, String>

 queuedQueries;

 private static ConcurrentHashMap<IsAConcurrentQueryThreadRunner,

 CanResolveAConcurrentQuery> runningThreads;

 public static ConcurrentQueryThreadImpl getInstance() throws

SQLException {

 if (instance == null) {

 instance = new ConcurrentQueryThreadImpl();

 queuedQueries = new ConcurrentHashMap<CanResolveAConcurrent-

 Query, String>();

 runningThreads = new ConcurrentHashMap<IsAConcurrentQuery-

 ThreadRunner,

 CanResolveAConcurrentQuery>();

 }

 return instance;

 }

 private ConcurrentQueryThreadImpl() throws SQLException {

 try {

 Class.forName(jdbcDriver).newInstance();

 } catch (Exception e) {

 throw new SQLException(e.getMessage());

 }

 try {

 new JDCConnectionDriver(jdbcDriver, jdbcURL, jdbcUser,

 jdbcPasswd);

 } catch (Exception e) {

 throw new SQLException(e.getMessage());

 }

 }

 public void runQuery(String query, CanResolveAConcurrentQuery domain

 Object)

 throws SQLException {

 Connection connection = DriverManager.getConnection(jdbcPoolURL);

 // reap any results from completed threads, if any

 reapCompletedThreads();

 // before we start a QueryThread for this query, letʼs submit any

 queries

 // that have already been queued

 while (!queuedQueries.isEmpty()

 && runningThreads.size() < numberOfConcurrentQueries) {

 CanResolveAConcurrentQuery queuedDomainObject

 = (CanResolveAConcurrentQuery) queuedQueries.keySet().

 toArray()[0];

 String queuedQuery = queuedQueries.get(queuedDomainObject);

 queuedQueries.remove(queuedDomainObject);

 runningThreads.put(new QueryThread(connection, queuedQuery),

 queuedDomainObject);

 }

 // now, either start a thread for this query or add it to the

 queued queries.

 if (runningThreads.size() < numberOfConcurrentQueries) {

 runningThreads.put(new QueryThread(connection, query), domain

 Object);;

 } else {

 queuedQueries.put(domainObject, query);

 }

 }

 public void waitForQueriesToComplete() throws SQLException {

 while (!queuedQueries.isEmpty() || !runningThreads.isEmpty()) {

 do {

 reapCompletedThreads();

 } while (!runningThreads.isEmpty());

 while (!queuedQueries.isEmpty()

 && runningThreads.size() < numberOfConcurrentQueries)

{

 CanResolveAConcurrentQuery queuedDomainObject

 = (CanResolveAConcurrentQuery)queuedQueries.keySet().

 toArray()[0];

 String queuedQuery = queuedQueries.

get(queuedDomainObject);

 queuedQueries.remove(queuedDomainObject);

 runningThreads.put(new QueryThread(

 DriverManager.getConnection(j

dbcPoolURL),

 queuedQuery),

 queuedDomainObject);

 }

 }

 }

 private void reapCompletedThreads() throws SQLException {

 for (IsAConcurrentQueryThreadRunner queryThread : runningThreads.

 keySet()) {

 if (! queryThread.isAlive()) {

 CanResolveAConcurrentQuery domainObject

 = runningThreads.get(queryThread);

 domainObject.setReaped(true);

 if (queryThread.getSQLException() != null) {

 runningThreads.remove(queryThread);

 throw new SQLException(queryThread.getSQLException().

 getMessage());

 } else {

 domainObject.processResultSet(queryThread.getResult

 Set());

 runningThreads.remove(queryThread);

 }

 }

 }

 }

 private class QueryThread extends Thread implements IsAConcurrentQuery

ThreadRunner {

 private Connection connection;

 private String query;

 private ResultSet resultSet;

 private SQLException sqlException;

JDJ.SYS-CON.com28 December 2006

Feature

 private QueryThread() {}

 public QueryThread(Connection connection, String query) {

 System.out.println(“(QueryThread) query is: “ + query);

 this.connection = connection;

 this.query = query;

 start();

 }

 public void run() {

 Statement statement = null;

 try {

 statement = connection.createStatement();

 if (statement.execute(query)) {

 resultSet = statement.getResultSet();

 connection.close();

 }

 } catch (SQLException e) {

 sqlException = e;

 }

 }

 public SQLException getSQLException() {

 return sqlException;

 }

 public ResultSet getResultSet() {

 return resultSet;

 }

 };

 private static ExecutorService executor

 = Executors.newFixedThreadPool(numberOfConcurrentQueries);

 private class QueryThreadPool implements IsAConcurrentQueryThread-

 Runner, Callable {

 private Connection connection;

 private String query;

 private ResultSet resultSet;

 private SQLException sqlException;

 private Future<?> future;

 private QueryThreadPool() {}

 public QueryThreadPool(Connection connection, String query) {

 System.out.println(“(QueryThreadPool) query is: “ +

 query);

 this.connection = connection;

 this.query = query;

 future = executor.submit(this);

 }

 public ResultSet call() throws SQLException {

 Statement statement = null;

 try {

 statement = connection.createStatement();

 if (statement.execute(query)) {

 resultSet = statement.getResultSet();

 connection.close();

 }

 } catch (SQLException e) {

 sqlException = e;

 throw new SQLException(e.getMessage());

 }

 return resultSet;

 }

 public SQLException getSQLException() {

 return sqlException;

 }

 public ResultSet getResultSet() {

 return resultSet;

 }

 public boolean isAlive() {

 return !future.isDone();

 }

 };

}

Listing 8: CountryList.java

package net.sourceforge.concurrentQuery.domain.model;

import net.sourceforge.concurrentQuery.domain.ResolvableFromConcurrentQuery;

import net.sourceforge.concurrentQuery.query.ConcurrentQueryFactoryBroker;

import net.sourceforge.concurrentQuery.query.ConcurrentQueryInterface;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.Map;

import java.util.TreeMap;

public class CountryList implements ResolvableFromConcurrentQuery {

 private ConcurrentQueryInterface cq = null;

 private Map<String, DistrictList> mapOfCountries = new TreeMap<String,

 DistrictList>();

 private CountryList(){}

 public CountryList(int numberOfCities) throws SQLException {

 this.cq = ConcurrentQueryFactoryBroker.getInstance().create-

 ConcurrentQuery();

 cq.addQuery(“select countrycode from city “

 + “group by countrycode “

 + “having count(*) > “ + numberOfCities, this);

 cq.resolve();

 for (String country : mapOfCountries.keySet()) {

 mapOfCountries.get(country).fetchDistrictInfo(country);

 }

 cq.resolve();

 }

 public boolean processResultSet(ResultSet rs) throws SQLException {

 if (rs != null) {

 while (rs.next()) {

 mapOfCountries.put(rs.getString(“countrycode”), new

 DistrictList());

 }

 }

 return true;

 }

 public Map<String, DistrictList> getMapOfCountries() {

 return mapOfCountries;

 }

}

JDJ.SYS-CON.com30 December 2006

nderstanding the complexity of AJAX at the
browser level is critical to refining and debug-
ging rich AJAX applications that leverage Web
technologies such as JavaScript, Cascading

Style Sheets (CSS), and XMLHttpRequests. Adding a
third-party AJAX runtime heightens the complexity
and sufficient browser tooling becomes critical when
attempting to build a rich Internet application around
existing libraries. The Eclipse AJAX Toolkit Framework
(ATF) provides both a multi-faceted set of browser
tooling features as well as support for integrating and
building on existing AJAX runtimes.
 IBM has a long history of working with the open
source community and supporting innovation and col-
laboration. The Eclipse ATF project is one of 150 that
IBM is currently participating in and actively making
technology contributions for various enhancements.
IBM’s goal around ATF is to accelerate the industry’s
acceptance of AJAX by offering it a complete open
source AJAX IDE. The project including plug-ins to the
Eclipse development platform is in ongoing develop-
ment efforts to provide exemplary tools for creating
and debugging AJAX applications.

How ATF Works
 ATF provides views into the CSS, XMLHttpRequests,
and the Document Object Models (DOM) of a Web ap-
plication along with any error, warning, or information
messages generated by the browser. These views are
linked to the currently loaded document in the browser
and responds to selections make of individual DOM
nodes. Inspection is crucial for finding and locating
problems in rich AJAX applications and doing this
inspection in the same environment as development

allows rapid application development and deployment.
ATF provides a capability to select a DOM node and
unravel it to expose any JavaScript functions refer-
enced in the markup, the CSS rules and properties
currently applied, and the HTML source. This allows
quick discovery of the style sheets and JavaScript func-
tions being used by third-party AJAX widgets, increas-
ing their flexibility and maintainability. Sifting through
directories and documentation to find out how widgets
are defining their look-and-feel is no longer needed
since simply selecting the widget in the embedded
browser will reveal the file and line number of the CSS
or JavaScript code used. Developers can now maintain
API-level abstraction from the toolkits used during
development but then have access via inspection into
the components of the rich AJAX application at the
browser level when debugging a deployed application.
 The DOM Source view in ATF provides both an
inspection tool and an editor for viewing and also mak-
ing changes to a node’s DOM source. ATF enables the
browser to become a canvas that enables modifications
to the DOM to be re-injected into the browser and
any functional or visual changes will be realized. The
source tooling around the embedded browser provides
live rendering of changes made to any node in the
DOM document. This feature has interesting and em-
powering applications such as the ability to inject link
and script nodes into the page’s DOM and then make
use of the loaded scripts when editing other nodes on
the page such as controls or user interface elements.
This feature lets AJAX be enabled on any Web site that
can be loaded via a URL and allow mashups of locally
created and deployed scripts with remote pages. This
editing capability provides developers with a sandbox

Kevin Sawicki is an acting

strategy engineer with IBM

in the Emerging Internet

Technology Group in Austin,

Texas. His responsibilities

include the strategic

development and growth of

AJAX technology to be

contributed to the open

source community.

ksawicki@us.ibm.com

by Kevin Sawicki

U

 The Development Power of
 Open Source AJAX Tooling

Bridging the gap between the development environment
 and the deployed browser environment

Feature

The Eclipse ATF project is one of 150 that IBM is
currently participating in to accelerate the industry’s acceptance of

AJAX by giving it a complete open source AJAX IDE”
“

31December 2006JDJ.SYS-CON.com

 The Development Power of
 Open Source AJAX Tooling

for testing and exploring runtime toolkits as well as
changing interactions dynamically within the browser.
The DOM source tooling for the browser lets developers
go so far as to develop rich AJAX applications complete-
ly inside the browser with no local project files on the
system. The gap between written and rendered DHTML
code is bridged as a side-by-side of runtime-specific
source and browser source can be viewed and edited.
AJAX application issues can now be resolved inside the
browser, which shortens development iterations with
changes only propagated back to application source
files when the resulting application functionality is
correct.
 The use of Cascading Style Sheets is an integral
part of rich Internet application development to
achieve a consistent visual look-and-feel. Achieving
the “desktop” application feel in a rich AJAX applica-
tion means making use of CSS properties to create
partial transparency when dragging an item into an
online shopping cart. Style sheet management and
refinement becomes tough for developers when mixing
developed styles with existing styles in AJAX runtime
toolkits. ATF provides a CSS view that’s driven by select-
ing any DOM element and viewing all CSS rules cur-
rently applied to that element as well as any cascading
that’s occurring. This view allows any defined property
for a rule to be changed and for properties to be added
and deleted with any modifications affecting all nodes
on the page using those style rules. The CSS tooling
provides a feature to select a CSS rule and visually
highlight all elements in the browser that currently
have that property rule applied. This feature lets
developers see what elements will be affected by chang-
es to that property and exposes the differentiation of
elements caused by cascading styles. The process of
managing and refining style sheets becomes stream-
lined as developers can deploy applications and then
tool the CSS live in the browser page until it’s correct
and then revert the changes made back to workspace
project files using the diff computing of the CSS view
that tracks all the CSS changes made since the page
was loaded.
 AJAX derives its power by using XMLHttpRequest
(XHR) as a transport for asynchronous communica-
tion to other sites or Web servers. ATF provides a moni-
tor of all XMLHttpRequests that occur for a page once
it’s loaded in the embedded browser. Developers can
get the turnaround time for the request as well as the
contents of the request and response and the target
URL. The XHR monitor rounds out the necessary in-
spection tools for components used in rich AJAX
applications.

Developers Can See the Benefits
 Developers familiar with the Java debugging sup-
port inside Eclipse will see the same features in ATF
for JavaScript debugging such as breakpoints, expres-
sion evaluation, and variable inspection. ATF brings
the Eclipse Java debug experience to JavaScript-based
applications with the same debugging behavior and
functionality. ATF provides a debugging perspective
that shows all the scripts currently loaded for a page
launched in the embedded Mozilla browser. The script
view can be used to inspect loaded scripts by opening
them in an editor with support for breakpoint creation.
Developers can easily discover and explore scripts used
in the page by setting the necessary breakpoints and
then interacting with the page to see what actions are
handled by what scripts.
 The debugger is unique in the sense in that its func-
tionality is supported for both locally created and de-
ployed applications and remote applications launched
via URL. A Web application can be fully debugged with
no local workspace files needed and JavaScript files can
be opened remotely with support for adding remote
breakpoints. Now testing a site simply requires ATF
and a URL and from that breakpoints can be set for
files, errors, exceptions, or on launch and the en-
tire user interaction with an AJAX application can be
stepped through. This lets developers explore runtime
toolkits from the top down with a JavaScript stack
frame that allows the correct level of inspection and
evaluation to verify the correct use of widgets and AJAX
support.
 The complexity created by utilizing various Web
technologies for building rich Internet applications
requires tooling not just at the source level but at the
browser level as well. The browser becomes a crucial
development tool since inspection and tooling allow in-
trospection and modification to take place for any page
navigated to. This bi-directionality gives Web 2.0 devel-
opers and testers the necessary information and tooling
needed to understand and resolve browser interactions.
The AJAX Toolkit Framework seeks to bridge the gap
between development environment and the deployed
browser environment. ATF provides the necessary
tooling around a Mozilla browser inside Eclipse and
reveals, via inspection, all the necessary elements of the
rich AJAX application for troubleshooting and debug-
ging. ATF brings the Eclipse development experience
to developers looking for a complete and sufficient tool
for developing and debugging rich Internet applica-
tions. ATF is an open source project under the Eclipse
Web Tools Platform. More information can be found at
http://www.eclipse.org/atf.

The DOM Source view in ATF provides both an inspection tool
and an editor for viewing and also making changes to a

node’s DOM source”
“

“Since we started using
WindowTester, tests that
took 2–3 weeks to write
previously can now be
done in 2–3 days.”

—Steve Tocco,
BEA Workshop

Director of Quality
Assurance

However, the team found that
creating and running tests still did
not meet their needs. The group
decided that developing and main-
taining their own test harness was
not their core competency and they
did not want to devote extensive re-
sources to creating a test infrastruc-
ture. Tocco states, “To meet a rapid
release schedule, the test suite must
be optimized as we can’t afford false
negatives or instabilities drawing
precious resources away from our
deliverables. Even more, tests need
to be authored rapidly as we try to
find optimizations in our schedules
while not compromising quality for
our customers. We weren’t getting
that in any form before. Our team
felt we weren’t agile enough to
meet the new release timelines—we
simply don’t have time now to rely
on manual tests alone.”

Moving to WindowTester
for Automated GUI Testing

The BEA Workshop team began
looking at tools that could auto-
mate the testing of GUI elements
of their Eclipse-based applica-
tions. They chose RCP Developer
from Instantiations and are
converting their test suite to use its
WindowTester component. They
selected a commercial product
even though there are open source
alternatives available because of
the tools’ ease of use as well as
Instantiations’ support, responsive-
ness, and professional documenta-
tion. According to Bill Roth, VP of
BEA Workshop Unit, “In terms
of our cost of investment in the
WindowTester tool, we believe the
cost of the licensing is greatly worth
the enhancement and efficiency
gained so far.”

How Testing Has Changed after
Implementing WindowTester

When evaluating RCP
Developer and WindowTester,
the BEA Workshop for WebLogic
team found that it took about two

months to achieve a 40% line cov-
erage in the product from a code
coverage perspective. According
to Tocco, “Since we started using
WindowTester, tests that took two
to three weeks to write previously
can now be done in two to three
days. It is much faster to get a test
developed and running. In addi-
tion, we have a higher stability rate
than before with a extraordinary
pass rates in our automated regres-
sion tests. This is fantastic. It lets
us spend our energy building the
product, not chasing test issues.”
The BEA Workshop for WebLogic
team also found that WindowTester
can handle a heavy test load. The
team currently runs over 300 tests.
Some of the tests are quite broad,
with multi-step lengthy testing sce-
narios. This is a 20 times increase
over what was in the release two
years ago for IDE automation.

Future: Full Migration to
WindowTester

The BEA Workshop for WebLogic
team plans a complete migration
away from the old test harness for
the IDE in six months. The team
intends to use the WindowTester
component of RCP Developer as the
sole tool for automated IDE testing
tool in Eclipse by the end of 2006.

Summary
Moving to Instantiations RCP

Developer and its WindowTester
functionality has allowed the BEA
Workshop for WebLogic group
to drastically cut the time it takes
to generate new GUI tests. The
move to WindowTester has saved
the group both time and money
allowing them to focus on devel-
oping their product rather than
creating and maintaining a test
infrastructure.

About BEA www.bea.com
BEA Systems is a company founded in 1995 that specializes in enterprise infrastructure
software, and has 77 offices in 37 countries. BEA Systems, Inc. is a world leader in enterprise
infrastructure software, delivering powerful standards-based platforms for building enterprise
applications and managing Service-Oriented Architectures even in heterogeneous IT environ-
ments. Customers depend on BEA Tuxedo®, WebLogic®, and AquaLogic™ product lines to reduce
IT complexity, leverage existing resources, and speed the delivery of new services. BEA also
provides support for Blended strategies that combine Open Source and commercial software
to best suit the needs of business and IT. With over 15,000 customers including the majority of
the Fortune Global 500, BEA provides the technology, solutions and services to help companies
achieve a state of Business LiquidITy™ where enterprise assets are freed up to deliver maximum
business value.

About Instantiations www.instantiations.com
Instantiations, Inc. provides leading-edge software products, services and technologies for
Eclipse, Java and Smalltalk. Instantiations offers professional development environments
and software products that integrate seamlessly with the latest development platforms.
Instantiations is a member of the Eclipse Foundation and offers a line of products for Eclipse,
Rational Application Developer, IBM WebSphere Studio and MyEclipse. Based in Portland, Ore.,
Instantiations was founded in 1997 by a team of internationally recognized pioneers in the field
of component software technology.

About Eclipse www.eclipse.org
Eclipse is an open source community whose projects are focused on providing an extensible
development platform and application frameworks for building software. Eclipse is an open
source community whose projects are focused on providing a vendor-neutral open develop-
ment platform and application frameworks for building software. The Eclipse Foundation is a
not-for-profit corporation formed to advance the creation, evolution, promotion, and support
of the Eclipse Platform and to cultivate both an open source community and an ecosystem of
complementary products, capabilities, and services.

© Copyright 2006
Instantiations, Inc.
RCP Developer, SWT Designer,
WindowTester, Help Composer and
RCP Packager are trademarks of
Instantiations. All other trademarks
mentioned are the property of their
respective owners.

This Case Study
is available online at
www.instantiations.com/
rcpdeveloper/resources/
casestudy-bea.pdf

“In terms of our cost
of investment in the
WindowTester tool, we
believe the cost of the
licensing is greatly worth
the enhancement and
efficiency gained so far.”

—Bill Roth,
VP of

BEA Workshop
Unit

BEA Systems and
Instantiations have had a
unique relationship while
working in the Eclipse

ecosystem. BEA is a strategic
member of the Eclipse Foundation,
has a representative on the Eclipse
Board, and is an active participant
in the Eclipse Web Tools project.
Instantiations is a long time Eclipse
member company, has a represen-
tative on the Eclipse Foundation
Board, and has had a number of
committers on Eclipse projects. The
work delivered by Instantiations
in the Eclipse Pollinate project
provided early proof-of-concept
technology for BEA’s Eclipse-based
tooling.

BEA Workshop makes devel-
oping Java applications easier by
allowing Eclipse developers to
quickly create, debug and test SOA
components, Web Services, Web
applications, BEA WebLogic Portal
applications, and enable Service-
Oriented Architecture (SOA) solu-
tions. BEA Workshop is based on
the Eclipse Open Source Integrated
Development Environment (IDE).
Eclipse includes a Rich Client
Platform (RCP) layer that makes it
easy to develop applications with
extensive GUI capabilities.

BEA also utilizes other key
Eclipse-based tools to develop
and test their own applications.
For example, BEA replies heavily
on the WindowTester component
of the RCP Developer software
from Instantiations to automate
the testing of GUI elements. RCP

Developer is a software develop-
ment product that accelerates the
creation of Eclipse RCP applications
by providing tools for constructing
and testing graphical user interfaces,
composing Help documentation and
packaging rich client applications
for deployment. We will explore
how BEA is using the WindowTester
component of RCP Developer in the
remainder of this case study.

Development Challenge
Three years ago, Workshop’s auto-

mated IDE-based testing was from a
home-grown testing infrastructure.
BEA is shifting its product release
schedule so releases will be deliv-
ered in 1/6th the time previously
required. According to Steve Tocco,
BEA Workshop Director of Quality
Assurance, “Our internal IDE test-
ing had inadequate code coverage
numbers with 1/20th the number
of tests our current automated test
suite contains. We determined that
the amount of intermittent failures,
the inadequate automated coverage,
as well as the cost to implement tests

was prohibitive in getting prod-
ucts to market quickly.” The BEA
Workshop group needed a better
solution for automated testing of
their application GUIs. They chose
Instantiations RCP Developer and
its innovative WindowTester func-
tionality to meet this need.

Solution: Using WindowTester
for Automated GUI Testing
Testing History

In addition to the in-house
testing infrastructure used by BEA
Workshop group, they previously
used and evaluated other commer-
cial off-the-shelf products. While
some of the tools provided a quick-
click and record of Swing tests,
they would not address the needs
raised as Workshop moved to the
Eclipse infrastructure in 2004. They
researched options and decided to
initially create their own test suite
using the open source Abbot SWT
GUI testing framework. For the
product release that shipped in July
06, they used the Abbot structure
for testing.

Components of RCP Developer™ 2.0

SWT Designer™ automatically generates Java code from a
powerful and intuitive visual designer
WindowTester™ records events and automatically generates GUI tests
based on the JUnit standard
Help Composer™ streamlines the creation of documentation
that is fully compatible with the Eclipse Help system
RCP Packager™ quickly automates deployment by generating
a flexible SWT-based Installer

❖

❖

❖

❖

BEA Uses RCP Developer™ to Improve Quality
and to Save Time & Money
BEA relies heavily on the WindowTester™ component
of the RCP Developer™ software from Instantiations
to automate testing of GUI elements

CASE STUDY

“Since we started using
WindowTester, tests that
took 2–3 weeks to write
previously can now be
done in 2–3 days.”

—Steve Tocco,
BEA Workshop

Director of Quality
Assurance

However, the team found that
creating and running tests still did
not meet their needs. The group
decided that developing and main-
taining their own test harness was
not their core competency and they
did not want to devote extensive re-
sources to creating a test infrastruc-
ture. Tocco states, “To meet a rapid
release schedule, the test suite must
be optimized as we can’t afford false
negatives or instabilities drawing
precious resources away from our
deliverables. Even more, tests need
to be authored rapidly as we try to
find optimizations in our schedules
while not compromising quality for
our customers. We weren’t getting
that in any form before. Our team
felt we weren’t agile enough to
meet the new release timelines—we
simply don’t have time now to rely
on manual tests alone.”

Moving to WindowTester
for Automated GUI Testing

The BEA Workshop team began
looking at tools that could auto-
mate the testing of GUI elements
of their Eclipse-based applica-
tions. They chose RCP Developer
from Instantiations and are
converting their test suite to use its
WindowTester component. They
selected a commercial product
even though there are open source
alternatives available because of
the tools’ ease of use as well as
Instantiations’ support, responsive-
ness, and professional documenta-
tion. According to Bill Roth, VP of
BEA Workshop Unit, “In terms
of our cost of investment in the
WindowTester tool, we believe the
cost of the licensing is greatly worth
the enhancement and efficiency
gained so far.”

How Testing Has Changed after
Implementing WindowTester

When evaluating RCP
Developer and WindowTester,
the BEA Workshop for WebLogic
team found that it took about two

months to achieve a 40% line cov-
erage in the product from a code
coverage perspective. According
to Tocco, “Since we started using
WindowTester, tests that took two
to three weeks to write previously
can now be done in two to three
days. It is much faster to get a test
developed and running. In addi-
tion, we have a higher stability rate
than before with a extraordinary
pass rates in our automated regres-
sion tests. This is fantastic. It lets
us spend our energy building the
product, not chasing test issues.”
The BEA Workshop for WebLogic
team also found that WindowTester
can handle a heavy test load. The
team currently runs over 300 tests.
Some of the tests are quite broad,
with multi-step lengthy testing sce-
narios. This is a 20 times increase
over what was in the release two
years ago for IDE automation.

Future: Full Migration to
WindowTester

The BEA Workshop for WebLogic
team plans a complete migration
away from the old test harness for
the IDE in six months. The team
intends to use the WindowTester
component of RCP Developer as the
sole tool for automated IDE testing
tool in Eclipse by the end of 2006.

Summary
Moving to Instantiations RCP

Developer and its WindowTester
functionality has allowed the BEA
Workshop for WebLogic group
to drastically cut the time it takes
to generate new GUI tests. The
move to WindowTester has saved
the group both time and money
allowing them to focus on devel-
oping their product rather than
creating and maintaining a test
infrastructure.

About BEA www.bea.com
BEA Systems is a company founded in 1995 that specializes in enterprise infrastructure
software, and has 77 offices in 37 countries. BEA Systems, Inc. is a world leader in enterprise
infrastructure software, delivering powerful standards-based platforms for building enterprise
applications and managing Service-Oriented Architectures even in heterogeneous IT environ-
ments. Customers depend on BEA Tuxedo®, WebLogic®, and AquaLogic™ product lines to reduce
IT complexity, leverage existing resources, and speed the delivery of new services. BEA also
provides support for Blended strategies that combine Open Source and commercial software
to best suit the needs of business and IT. With over 15,000 customers including the majority of
the Fortune Global 500, BEA provides the technology, solutions and services to help companies
achieve a state of Business LiquidITy™ where enterprise assets are freed up to deliver maximum
business value.

About Instantiations www.instantiations.com
Instantiations, Inc. provides leading-edge software products, services and technologies for
Eclipse, Java and Smalltalk. Instantiations offers professional development environments
and software products that integrate seamlessly with the latest development platforms.
Instantiations is a member of the Eclipse Foundation and offers a line of products for Eclipse,
Rational Application Developer, IBM WebSphere Studio and MyEclipse. Based in Portland, Ore.,
Instantiations was founded in 1997 by a team of internationally recognized pioneers in the field
of component software technology.

About Eclipse www.eclipse.org
Eclipse is an open source community whose projects are focused on providing an extensible
development platform and application frameworks for building software. Eclipse is an open
source community whose projects are focused on providing a vendor-neutral open develop-
ment platform and application frameworks for building software. The Eclipse Foundation is a
not-for-profit corporation formed to advance the creation, evolution, promotion, and support
of the Eclipse Platform and to cultivate both an open source community and an ecosystem of
complementary products, capabilities, and services.

© Copyright 2006
Instantiations, Inc.
RCP Developer, SWT Designer,
WindowTester, Help Composer and
RCP Packager are trademarks of
Instantiations. All other trademarks
mentioned are the property of their
respective owners.

This Case Study
is available online at
www.instantiations.com/
rcpdeveloper/resources/
casestudy-bea.pdf

“In terms of our cost
of investment in the
WindowTester tool, we
believe the cost of the
licensing is greatly worth
the enhancement and
efficiency gained so far.”

—Bill Roth,
VP of

BEA Workshop
Unit

BEA Systems and
Instantiations have had a
unique relationship while
working in the Eclipse

ecosystem. BEA is a strategic
member of the Eclipse Foundation,
has a representative on the Eclipse
Board, and is an active participant
in the Eclipse Web Tools project.
Instantiations is a long time Eclipse
member company, has a represen-
tative on the Eclipse Foundation
Board, and has had a number of
committers on Eclipse projects. The
work delivered by Instantiations
in the Eclipse Pollinate project
provided early proof-of-concept
technology for BEA’s Eclipse-based
tooling.

BEA Workshop makes devel-
oping Java applications easier by
allowing Eclipse developers to
quickly create, debug and test SOA
components, Web Services, Web
applications, BEA WebLogic Portal
applications, and enable Service-
Oriented Architecture (SOA) solu-
tions. BEA Workshop is based on
the Eclipse Open Source Integrated
Development Environment (IDE).
Eclipse includes a Rich Client
Platform (RCP) layer that makes it
easy to develop applications with
extensive GUI capabilities.

BEA also utilizes other key
Eclipse-based tools to develop
and test their own applications.
For example, BEA replies heavily
on the WindowTester component
of the RCP Developer software
from Instantiations to automate
the testing of GUI elements. RCP

Developer is a software develop-
ment product that accelerates the
creation of Eclipse RCP applications
by providing tools for constructing
and testing graphical user interfaces,
composing Help documentation and
packaging rich client applications
for deployment. We will explore
how BEA is using the WindowTester
component of RCP Developer in the
remainder of this case study.

Development Challenge
Three years ago, Workshop’s auto-

mated IDE-based testing was from a
home-grown testing infrastructure.
BEA is shifting its product release
schedule so releases will be deliv-
ered in 1/6th the time previously
required. According to Steve Tocco,
BEA Workshop Director of Quality
Assurance, “Our internal IDE test-
ing had inadequate code coverage
numbers with 1/20th the number
of tests our current automated test
suite contains. We determined that
the amount of intermittent failures,
the inadequate automated coverage,
as well as the cost to implement tests

was prohibitive in getting prod-
ucts to market quickly.” The BEA
Workshop group needed a better
solution for automated testing of
their application GUIs. They chose
Instantiations RCP Developer and
its innovative WindowTester func-
tionality to meet this need.

Solution: Using WindowTester
for Automated GUI Testing
Testing History

In addition to the in-house
testing infrastructure used by BEA
Workshop group, they previously
used and evaluated other commer-
cial off-the-shelf products. While
some of the tools provided a quick-
click and record of Swing tests,
they would not address the needs
raised as Workshop moved to the
Eclipse infrastructure in 2004. They
researched options and decided to
initially create their own test suite
using the open source Abbot SWT
GUI testing framework. For the
product release that shipped in July
06, they used the Abbot structure
for testing.

Components of RCP Developer™ 2.0

SWT Designer™ automatically generates Java code from a
powerful and intuitive visual designer
WindowTester™ records events and automatically generates GUI tests
based on the JUnit standard
Help Composer™ streamlines the creation of documentation
that is fully compatible with the Eclipse Help system
RCP Packager™ quickly automates deployment by generating
a flexible SWT-based Installer

❖

❖

❖

❖

BEA Uses RCP Developer™ to Improve Quality
and to Save Time & Money
BEA relies heavily on the WindowTester™ component
of the RCP Developer™ software from Instantiations
to automate testing of GUI elements

CASE STUDY

JDJ.SYS-CON.com34 December 2006

ervice Data Objects (SDOs) sim-
plify and unify Service Oriented
Architecture (SOA) data access
and code.

 SDO complements the strength that
SCA (Service Component Architecture)
offers for simplifying development
of SOA-based solutions. SCA handles
the composition of service networks
and SDO focuses on simplifying data
handling. These technologies are getting
significant support in the industry. The
development of the SDO and SCA speci-
fications is in the hands of the Open Serv-
ice Oriented Architecture collaboration
(http://www.osoa.org) and open source
implementations of these specifications
are being developed in the Apache Tus-
cany incubator project (http://incubator.
apache.org/tuscany).
 In this two-part article we use a sce-
nario to demonstrate the value of many
of the facets of SDO.

Some History
 The first SDO specification was
published in November 2004 as a result
of collaborative between IBM and BEA.
The Eclipse Foundation developed an
open source implementation of this SDO
1 specification. SDO primarily addressed
the lack of general applicability of the ex-
isting technologies such as JAXB and JDO.
Around that time Microsoft entered this
space with ADO.NET, offering a slightly
different technical perspective. The SDO
2.0.1 specification appeared late in 2005
and is continuing to evolve, with wider
industry involvement; at the time of writ-
ing revision 2.1 is imminent and revision
3.0 is in the pipeline.

The Advantages of SDO
 SDO provides flexible data structures
that allow data to be organized as graphs
of objects (called data objects) that are
composed of properties. Properties can
be single or many valued and can have
other data objects as their values. A data
object can maintain a change summary
of the alterations made to it, providing
efficient communication of changes and

a convenient way to update an original
data source. SDO naturally permits dis-
connected data access patterns with an
optimistic concurrency control model.
 SDO offers a convenient way to work
with XML documents. SDO implementa-
tions provide helpers to populate a data
graph from both XML documents and
relational databases and to read SDO
metadata from an XML Schema Defini-
tion (XSD). Data objects can be serialized
to XML and the metadata can be serial-
ized to an XSD file (see Figure 1).
 Data Objects can be introspected
using the SDO metadata API to get infor-
mation about types, relationships, and
constraints.
 SDO delivers unified and consist-
ent access to data from heterogeneous
sources. This provides both a simple
programming model for the application
programmer and lets tools and frame-
works work consistently across those
heterogeneous data sources.
 SDO offers a single model for data
across the enterprise.
 The diagram below shows a WebUI
client accessing data from a variety of
sources, mediated by SDO. Web applica-
tions typically operate in a semi-con-

nected fashion and rely on optimistic-
concurrency. SDO is well suited to this
environment, where data can be manipu-
lated remotely and then a summary of
the changes can be delivered back to the
data sources (see Figure 2).
 The following sections will introduce
SDO in more detail.

A Scenario
 This example is based on an imagi-
nary project inspired by some real-world
scenarios. A hypothetical group of
universities, hospitals, and companies
have embarked on a long-term collabora-
tion to study some family of diseases that
has both a genetic and environmental
component. They will need to exchange
the medical histories of the people they’re
treating and studying, and also exchange
the medical histories of relatives. The data
will likely come from disparate sources;
basic patient data will probably be in a
relational database; data from medical
investigations conducted as part of this
research project will be in XML docu-
ments; other medical data may come
from less well known formats or custom
sources. The amount of data about any
given person will vary greatly. A long-

Service Data Objects

by Kelvin Goodson
 and Geoffrey Winn

What Is SDO?

S

Kelvin Goodson is based at

IBM Hursley in the UK as

part of the Open Source SOA

team. He is a committer to

the Apache Tuscany incubator

project, and works primar-

ily on development of the

Tuscany Java implementation

of SDO. He gained a Ph.D. in

image analysis and artificial

intelligence in 1988, and has

previously worked in the areas

of medical imaging, weather

forecasting and messaging

middleware.

kelvin_goodson@uk.ibm.com

Part One: The value of many of the facets of SDO

 Figure 1

35December 2006JDJ.SYS-CON.com

standing patient may come with an exten-
sive medical history. A relative might have
little beyond name and relationship. This
data has to be assembled into a coherent
manageable whole, and SDO is an attrac-
tive option for representing a complicated
mix of data about each person and po-
tentially maintain a graph of such entities.
For this example, we can’t even assert that
the graph is a (family) tree because with
adoption, re-marriage, fertility treatment,
and so on, one person’s associations with
others can be quite intricate.
 The various institutions involved may
not want to give unrestricted access
to their data sources, although they’ve
agreed to supply pieces of it as needed.
A hospital may be willing to provide the
medical data associated with one patient
as part of an investigation, but they won’t
permit open access to their entire patient
record database. Similarly, a company
will want to limit access to commercially
sensitive material. SDO provides a con-
venient way for the owner of the data to
deliver to outsiders a subset of that data of
their own choosing.
 We’ll now show some of the key values
of SDO through this scenario.
 To illustrate where an SDO feature
helps, consider a scenario where a hospi-
tal refers a patient to a university for fur-
ther investigation. Relevant data will have
to flow from the hospital to the university,
and it may well come from a variety of
different sources. Assume that name, age,
records of visits, and so forth comes from
an SQL database, while specific medi-
cal data (the results of tests) are in XML
documents. Using standard SDO features
it’s straightforward for the hospital to

combine these various sources into a data
object and send that, letting users of the
data access it via SDO’s unified API.
 The university does whatever it does
with the patient, and then updates the
SDO and sends it back. The change his-
tory in the SDO lets the hospital apply the
updates to its various data repositories
without the university ever needing to
know the detail of those repositories.
 It’s unlikely that these updates will clash
with other updates made independently
by the hospital, but if they do, the use of an
SDO change summary ensures that this is
detected and sorted out (probably manu-
ally in this case). The software component
responsible for moving data between the
data source (for example, a relational data-
base in this case) and SDO is called a Data
Access Service (DAS). A DAS can typically
also handle conflicting updates.1

 Using SDO as the data exchange format
makes the system tolerant of the consider-
able variation to be expected in such a
loosely coupled system. It’s inevitable that,
sooner or later, the versions of the ap-
plications that are sending and receiving
data will get out-of-step. In fact, this may
be usual. However, the fact that an SDO
can arrive with its own metadata means
that an older application can always
retrieve what it wants from a newer (and
presumably richer) input SDO – ignor-
ing anything that it doesn’t recognise. In
the reverse case, a newer application can
similarly recognise that the information it
has received is from an older version and
compensate accordingly.
 In the previous scenarios, we’ve con-
centrated mostly on XML and SQL data
sources. Now, let’s suppose that in one

hospital the results from the biochemistry
lab are delivered in HL7 message format.
This message format is widely used in
the healthcare industry but is virtually
unknown outside it, and so there’s no
off-the-shelf way to read such messages
into an SDO. At this point there are several
choices. We could use some broker-style
product to reformat the HL7 into XML
and then read it into an SDO or we could
pay someone to write a new DAS that
would populate an SDO directly from
HL7. Since our collaborators are using
an open source implementation of SDO,
however, they opt to write their own DAS
and donate it to the Apache Software
Foundation’s Tuscany project.
 Other approaches exist to linking these
various organisations, such as putting
some software intermediary in the mid-
dle and using that to convert the data as
needed. To do so though requires knowl-
edge of all the possible input and output
formats and how to convert between
them. In such a loose collaboration there
simply is no such central authority.
 We now turn our attention to present-
ing the details of SDO using some code
fragments.

Creating Types
 In SDO data objects have a type so the
first step in presenting our example is to
construct the types we’re going to use.
We have several choices here. The first
choice we face is whether to generate
static Java classes that represent the types
or whether to build them dynamically.
 In a situation where the type system
is stable and well understood then
generating static types leads to simpler,
more natural coding. For example, with
generated types we’d be able to code
something like…

person.getPatientName()

as opposed to

person.getString(“patientName”)

 Statically generated types also offer
the possibility for the programmer to
code to the generated interface without
knowing the SDO API. The corollary of
this is that when the type system isn’t
well known or might change then the
dynamic SDO API may be more suitable.
Choosing to use statically generated
types has the advantage that the whole

 Figure 2

Geoffrey Winn is based at IBM

Hursley in the UK, as part of

the Open Source SOA team.

He is a member of the SDO

specification group and cur-

rently works on development

of the Apache Tuscany C++

implementation of SDO. He

has degrees in Mathematics

and Computation, and has

previously worked in the areas

messaging and brokering

middleware.

gwinn@uk.ibm.com

JDJ.SYS-CON.com36 December 2006

Service Data Objects

SDO dynamic API is still available to the
programmer for handling less common
operations.
 We’re going to focus on dynamically
building types, since it naturally leads to
exploring more of the SDO API, but bear
in mind that if we were to use the option
of generating static classes we have the
power of SDO operating behind the
scenes while using Java method calls that
are no more than JavaBean getters and
setters.
 An option when defining types dy-
namically might be to use the facilities
of an existing DAS, which, for example,
could convert from a database schema;
we could also use SDO’s XSDHelper to
read an XSD and build SDO types from
it. The SDO specification provides a way
to create types dynamically, however,
it depends on knowing the SDO API,
which we haven’t seen yet! To simplify
this example, we’ll use an extension
from Apache Tuscany, which lets type
definitions be built without knowing the
SDO API.

 Type personType = SDOUtil.createType(
 TypeHelper.INSTANCE, “www.example.

 org”, “Person”, false);

 The net result of this line of code
is the creation of an empty SDO type
called “Person” scoped by the URI
“www.example.org” and when complet-
ed, this type can be used to instantiate
data objects. We can now add properties
to the type and set its characteristics.
Every property has a type, and we can
make use of SDO’s built-in types (in this
case a string) to build our model.

 Type stringType = TypeHelper.INSTANCE.
 getType(“commonj.sdo”, “string”);

 We use this type to add a “name”
property to our “person” type.

 SDOUtil.createProperty(personType,

 “name”, stringType);

 In our example scenario we can’t
know in advance all the information
we might want to associate with a
person. By making the type open we
permit data objects having this type to
carry additional properties that aren’t
defined as part of this type.

 SDOUtil.setOpen(personType, true);

 We could continue building this
type in this way, however, it would
rapidly become tedious. An alternative
approach is to use SDO’s XSDHelper
to build a type system by reading XML
schema definitions (see Figure 1).
 The XSD for our type definitions
is shown in Listing 1. Just as in our
previous code example, we’ve made the
Person type in the XSD open by using
the “xsd:any.” There are other interesting
aspects of this schema that we’ll develop
as the example unfolds.
 We can read this schema using SDO’s
XSDHelper and then we have three new
types, Person, Relative, and PersonSet,
available to us that can be used to create
data objects.

File inputFile =

 new File(“Person.xsd”).getAbsoluteFile();

InputStream inputStream =

 new FileInputStream(inputFile);

List schemaTypes = xsdHelper.define(

 inputStream,

 inputFile.toURI().toString());

Building a Graph
 These new types are all scoped with-
in the URI www.example.org/people.
Now that we have some types defined
we’re in good shape to create some
data objects, so the first thing we do
is to use the SDO DataFactory and
our Person type to construct an SDO
DataObject representing an instance
of Person.

 DataObject person1 = DataFactory.
 INSTANCE.create(“www.example.org/

 people”, “Person”);

 We know from the XSD that the Person
type has “id,” “name,” and “gender”
properties so we can set values for these
properties as follows.

 person1.setString(“id”, “1”);
 person1.setString(“name”, “Joe Johnson

 Snr.”);

 person1.setString(“gender”, “male”);

 We can begin building a graph by
adding this person to a set of “referrals”
in a test, i.e., the set of people who have
been referred by a medical practitioner
because they’ve exhibited symptoms
or are related to an existing patient. We
do this by creating a new DataObject of
type PersonSet.

 DataObject referrals = DataFactory.

 INSTANCE.create(“www.example.org/

 people”, “PersonSet”);

 The “people” property of the referrals
DataObject is defined in the XSD as many
valued and is therefore accessed via the
getList method.

 referrals.getList(“people”).

 add(person1);

Containment
 Something to note here is that we
have created a containment relationship
between the person1 DataObject and the
referrals DataObject. SDO treats contain-
ment relationships in a special way. In
every data graph each data object apart
from the root has a link to exactly one par-
ent data object that is its container. The
corresponding property from the parent
to the child is marked as a containment
property. So the containment relation-
ships form a strict hierarchical structure
whereby every data object in a graph is
reachable by traversing only the contain-
ment links. To enable SDO to describe
richer, more diverse graph structures,
non-containment links can also be
included into the graph. These non-con-
tainment links permit arbitrary references
across the containment hierarchy.
 SDO has behavior built in to preserve
the containment hierarchy constraint;
so, for example, if you assign a data
object into a graph as the value of a
containment property then any existing
value at that location in the graph will
be automatically displaced (the value
of its parent property becomes null and
the orphaned data object, along with
any children it might have, becomes
a separate data graph). In addition, if
the data object that you’re assigning
to the graph is already contained in a
data graph then it will be automatically
removed from that containment asso-
ciation before being assigned to its new
location.
 Let’s take a look at an example. Sup-
pose that the institutions running the
tests have learned from the mistakes of
previous such projects in which patients
already diagnosed with a condition have
inadvertantly received letters intended for
new referrals and this caused unneces-
sary distress. This was seen as sufficiently
important for them to engineer their
data models to ensure that referrals and

37December 2006JDJ.SYS-CON.com

patients were always disjoint sets. Listing 2
shows the XML schema used to model the
test. It makes use of the schema shown earlier
to model the people involved in the test.
 This schema has a global element named
“test,” which is of type “Test,” which contains
three sets of people: referrals, patients, and
relatives. We saw from the previous schema
that a PersonSet contains a list of people so
this arrangement of containment relation-
ships ensures that if we assign a person who
already exists in the set of referrals to be
in the set of patients then by virtue of the
preservation of containments constraint, that
person is automatically removed from the
referrals set by the SDO infrastructure. Let’s
see that in action.

 DataObject test = DataFactory.INSTANCE.
create(“www.example.org/MedicalTest”, “Test”);

 test.set(“referrals”, referrals);

 At this point our entire test consists of a set
of referrals with one member (we haven’t yet
initialized the set of patients or relatives so
they take the default null value). Here’s how it
would serialize to XML.

<Test:test xmlns:Test=”www.example.org/

MedicalTest”>

 <referrals>

 <person gender=”male” id=”1” name=

 ”Joe Johnson Snr”>

 <dob>1 January 1950</dob>

 </person>

 </referrals>

</Test:test>

 Having visited the hospital, Joe Johnson
Sr. is found to have symptoms indicat-
ing one of the conditions that the test is
investigating, so he’s added to the set of
patients.

 DataObject patients = test.createData-
 Object(“patients”);

 patients.getList(“person”).add(person1);

 As an aside, note how we created the
patients DataObject in a more concise
way this time. The “test” DataObject
knows the type of its “patients” property
and so we don’t need to use DataFac-
tory to look up the type and create an
instance.

 Having made this assignment of person1
to the set of patients, this is how the whole
test serializes.

<Test:Test xmlns:Test=”www.example.org/

MedicalTest”>

 <referrals/>

 <patients>

 <person gender=”male” id=”1” name=

 ”Joe Johnson Snr.”/>

 </patients>

</Test:Test>

 So as a result of this one assignment, the
patient’s set has one member and the referrals
set has been reduced to zero.
 In part two of this article, we’ll examine
more SDO features, including the use of open
content, change summaries, and references
between objects that express more than con-
tainment.

References
1 Williams, K., Daniel, B. “SOA Web Services

- Data Access Service”, Java Developer’s
Journal, August 2006, http://java.sys-con.
com/read/260053.html

Listing 1
<?xml version=“1.0“ encoding=“UTF-8“?>
<schema xmlns=“http://www.w3.org/2001/XMLSchema“
 targetNamespace=“www.example.org/people“
 xmlns:sdo=”commonj.sdo”
 xmlns:sdoxml=”commonj.sdo/xml”
 xmlns:tns=”www.example.org/people”>

 <import namespace=”commonj.sdo/xml” schemaLocation=”sdoXML.xsd” />

 <complexType name=”Person”>
 <sequence>
 <element name=”dob” type=”date”/>
 <element name=”relative” maxOccurs=”unbounded”
type=”tns:Relative”/>
 <any namespace=”##other” processContents=”lax”
maxOccurs=”unbounded”/>
 </sequence>
 <attribute name=”id” type=”ID”/>
 <attribute name=”name” type=”string”/>
 <attribute name=”gender” type = “tns:Gender”/>
 </complexType>

 <complexType name=”Relative”>
 <attribute name=”target” type=”IDREF” sdoxml:propertyType=”tns:
Person” use=”required”/>
 <attribute name=”relationship” type=”string” />
 <attribute name=”genetic” use=”optional” type=”boolean”/>
 </complexType>

 <complexType name=”PersonSet”>
 <sequence>
 <element name=”people” type=”tns:Person”
maxOccurs=”unbounded”/>
 </sequence>
 </complexType>

 <simpleType name=”Gender”>
 <restriction base=”string”>
 <enumeration value=”male” />
 <enumeration value=”female” />
 </restriction>
 </simpleType>

</schema>

Listing 2
<?xml version=“1.0“ encoding=“UTF-8“?>
<schema xmlns=“http://www.w3.org/2001/XMLSchema“
 xmlns:people=”www.example.org/people” xmlns:sdo=”commonj.sdo”
 xmlns:sdoxml=”commonj.sdo/xml”
 xmlns:tns=”www.example.org/MedicalTest”
 targetNamespace=”www.example.org/MedicalTest”>

 <import namespace=»www.example.org/people»
 schemaLocation=”People.xsd” />

 <element name=”test” type=”tns:Test” />
 <element name=”condition” type=”tns:Condition” />

 <complexType name=”Test”>
 <sequence>
 <element name=”referrals” type=”people:PersonSet” />
 <element name=”patients” type=”people:PersonSet” />
 <element name=”relatives” type=”people:PersonSet” />
 </sequence>
 </complexType>

 <complexType name=”Condition”>
 <sequence>
 <element name=”diagnosed” type=”date” />
 </sequence>
 <attribute name=”name” type=”tns:ConditionName” />
 </complexType>

 <simpleType name=”ConditionName”>
 <restriction base=”string”>
 <enumeration value=”Rigellian fever” />
 <enumeration value=”Vegan choriomeningitis” />
 <enumeration value=”Scrofungulus” />
 <enumeration value=”Panarr Syndrome” />
 </restriction>
 </simpleType>

</schema>

JDJ.SYS-CON.com38 December 2006

here are a number of reasons
why we continuously change
our enterprise applications, but
sometimes it’s hard to explain

to the requester why another change
would be so costly and time-consum-
ing to implement. IT leaders who
want to be fully prepared for inevita-
ble changes in the corporate software
infrastructure should do their best to
avoid system coupling on both busi-
ness and technological levels.
 A modern enterprise information
system (EIS) consists of hordes of ap-
plications bound together to support
business activities in the enterprise.
The degree of application coupling
identifies the difficulty of making
changes to them. Although coupling
has been always used to describe the
connections between application’s
components, it can be also used to
describe relations between applica-
tions within the entire EIS.
 Applications shouldn’t be thought
of as a system created forever. The
technology is always improved, new
data is collected, organizations are re-
structured, merges occur, and new laws
and regulations are passed, all of which
affect the EIS. High coupling is a trait
that complicates systems maintenance
and makes it more expensive to man-
age. Highly coupled solutions are more
diffi cult to modify since changes made
in one place cause changes to be made
somewhere else. Although coupling is
essential to the connected applications

that should have common assump-
tions about their interaction processes,
we should typically work towards
decreasing these levels of coupling.
 The last technological response to
the coupling and integration prob-
lems, is Service-Oriented Architec-
ture (SOA).
 There are two major aspects of
coupling – technological and func-
tional. They are addressed in different
ways by different people.
• Technological coupling is the result

of assumptions about transport
protocols, data encoding schemes,
authentication mechanisms, and
so on. This aspect is the responsi-
bility of system architects.

• Functional coupling comes from
assumptions about the process of
interaction and exchanged data.
This aspect should be addressed by
analysts and domain experts.

Technological Coupling
 Technological coupling is caused
by assumptions about technical
aspects. The more the application

knows about how interaction process
is organized, the higher coupling is.
 To become integrated, applications
should speak the same language. This
can be achieved by writing applica-
tions to use a single communication
technology or by adapting them to
each other using bridges, proxies,
and other similar approaches. Within
these methods, individual techno-
logical assumptions of particular
solutions are replaced with a single
standard set of assumptions. These
assumptions are usually more high-
level. For example, instead of specify-
ing that input files should start with
left brocket characters, we specify
that it is XML text that conforms to
an XML schema. These assumptions
are usually supported by third-party
libraries and tools, so we do not have
to implement them explicitly in our
applications. Thus Web service inter-
action assumptions are implemented
by a respective runtime (in Microsoft
.NET and Java EE, such a runtime is a
part of corresponding platforms).
 Today, the most popular solutions
are based on Service-Oriented Archi-
tecture (SOA) and Enterprise Service
Bus (ESB). There are many SOA/ESB
products available on the market
that helps integrate applications with
each other with minimal changes and
replaces development efforts with
configuring efforts. Often the integra-
tion of two particular applications
could not be foreseen at the time of

Decoupling

by Konstantin Plotnikov and
Vladimir Shraibman

Reducing Maintenance Costs
Through Systems Decoupling

T

Konstantin Plotnikov is a

senior architect at Axmor

Software, Russian software

development company.

Constantine has been working

with distributed applications

since 1994, and has more

than 14 years experience in

the IT industry. During this

tenure, he’s been a program-

mer and software architect.

He participated in JDO and JMI

JCP expert groups.

cap@isg.axmor.com

Technological and functional decoupling

A modern enterprise information system (EIS) consists of
hordes of applications bound together to support

business activities in the enterprise”
“

JDJ.SYS-CON.com40 December 2006

conception, like in case of a merger
or an acquisition. SOA and ESB offer
ideology and tools that help integrate
existing applications and facilitate fu-
ture integrations. The primary theme
of products that offer solutions to
problems of high technical coupling
is independence from technical pecu-
liarities of the applications.
 SOA/ESB products help overcome
the following issues:
• Differences in transport proto-

cols and message exchange pat-
terns: For example, one client may
require synchronous invocation
over HTTP, while another might
require asynchronous calls over a
reliable asynchronous transport
accessed through JMS API. Today’s
popular solution is to use messag-
ing products such as WebSphere
MQ or Microsoft Message Queuing,
and to use bridges to adapt appli-
cations that use other transports.
WS-BPEL implementations (that
provide orchestrating for Web ser-
vices) are also used for translating
message exchange patterns.

• Differences in data models: For
example, an EIS may use an inter-
nal format for purchase orders.
If a decision to support a public
standard like UBL is made, then
an adapter service to translate
incoming and outgoing mes-
sages between these two formats
is required. SOA products provide
extension points where such adapt-
ers can be added to supply auxilia-
ry libraries and languages that will
support format transformations.

• Legacy service integration: SOA
solutions allow interaction of dif-
ferent legacy applications based
on various integration technolo-
gies. It might be supported by
bridges between the technologies.
For example, if a SOA application
with SOA technical assumptions
needs to interact with a CORBA
application with respective

assumptions, then a bridge trans-
lating SOAP messages to CORBA
and vice versa can be used. Such
integration is often almost trans-
parent and changes in the legacy
application sometimes can be
avoided.

• Changes of a service location: If
an application accesses a service
provided by another application,
it should be ready for changes of
the service location. This is usually
achieved in one of the following
two ways:
– The application attempts to

find the required service using
a service directory mechanism
such as UDDI. So if the service
is relocated, the application can
find it again in the new location.

– The application uses a mes-
saging product like WebSphere
Message Broker. Here develop-
ers shift the responsibility for
locating services to the messag-
ing product which routes mes-
sages to correct destinations.
Administrators have to update
the product configuration if
location of the service changes.

• Multiple authentication domains:
Sometimes different partitions
of an EIS use different authen-
tication mechanisms. In such
cases, authentication informa-
tion needs to be translated from
one security domain to another.
For example, WS-Trust and WS-
SecureConversation implementa-
tions can be utilized.

 These products reduce the amount
of technical assumptions that have
to be shared by applications, thus
reducing technical coupling between
them.
 Although modern approaches
are useful, we should not consider
tools magic wands. They do not
make developers free from knowing
technologies and thinking about how

to use them effectively. It is very easy
to misuse the tools and to introduce
security and performance problems,
as described later in this article.
 Another important point is that we
cannot assume a migration to SOA
being the last migration. SOA/ESB
is based on experience gained from
previous integration technologies like
CORBA, and it will be superseded by
technologies based on experience
gained from SOA/ESB. This issue
should be considered when the cost
of migration to SOA is estimated.
Early signs of coming transition are
complexity and overabundance of
standards.
 When problems of technical cou-
pling are solved, this is not the end
of the story, but rather, just the first
step in making problems related to
functional coupling more obvious.

Functional Coupling
 Functional coupling is the concept
that can be applied to real business
processes and paper-based bureau-
cracy. For example, if a member of
an organization has to sign ten forms
in different departments to access
a document, then the workflow is
tightly coupled with a number of
other business processes in this
organization.
 In computer systems, high
functional coupling may happen
when highly coupled workflows are
implemented because of pitfalls in
functional requirements. In some
cases computer-based implementa-
tion of business processes does not
reflect actual processes (this might
happen due to many reasons and
in particular from restructuring an
organization’s workflow). In all cases,
functional coupling is caused by what
an application does rather than how.
Therefore, such problems are solved
by changing functional assumptions
about business processes and imple-
menting these changes.

Decoupling

Vladimir Shraibman is an

analyst at Axmor. He has been

working in the IT industry

for more than 6 years as a

programmer, software analyst

and team leader. Vladimir was

a member of Axmor’s team

prepared a series of articles

devoted to migration of J2EE

applications from JBoss AS to

Geronimo AS and IBM Web-

Sphere Community Edition.

shvb@isg.axmor.com

When problems of technical coupling are solved, this is not
the end of the story, but rather, just the first step in making

problems related to functional coupling more obvious”
“

41December 2006JDJ.SYS-CON.com

 Functional coupling problems are often less obvious
than the technical ones. They should be detected and
addressed by analysts and domain experts who need to
decide what requirements need modification.
 An important aspect of activities that reduce functional
coupling is reaching functional cohesion, meaning that
application functionality should contribute to a single
well defined task. UNIX commands and text utilities are
classic examples of correlation between programs and
specific actions.
 Often application scope is extended on an ad hoc basis
and the initial task gets lost in changes. It is like a library
maintenance application that transforms into Internet
bookshops by adding a few use cases here and there. Low
cohesion of applications in an EIS leads to a number of
problems. The most obvious are:
• Code is difficult to understand which raises expenses

for each change.
• Applications are more highly linked and they are more

likely to break if another one changes. Moreover, if
these applications are maintained by different devel-
opment teams, then making changes requires addi-
tional team coordination expenses.

• System failures happen more often, and the applica-
tions are difficult to test when business processes are
spread among different applications and servers. This
leads to increased development and testing efforts
and increased bugs found after deployment.

• In systems with low cohesion, services are more often
located on different servers. As a result the network
load is raised, and more expensive hardware is typi-
cally required to achieve acceptable performance.

 Sometimes functional coupling problems and a lack
of functional cohesion can be noticeable to software
architects. A possible indicator is absence of communica-
tion cohesion (i.e., when several different applications
are responsible for operating the same business data).
This makes an EIS more difficult to maintain and forces
developers to deal with problems that could have been
avoided if a more adequate domain analysis were done.
 Requirements affect applications, but the reverse may
also be true. An EIS that adequately implements business
processes of an organization provides extremely valuable
feedback about the organization’s structure and workflow.
Thus, if an application belonging to an EIS demonstrates
poor cohesion, it may be a sign that underlying business
processes could be improved to increase the degree of
cohesion. Organizations should not neglect using this as
a way of collecting helpful information.
 Problems of high functional coupling cannot be
reduced purely by technological means since the most
difficult part is requirement gathering. The most that we
can expect from tools is help in performing a re-factoring
of an application and related workflows. Modern IDEs,
such as JetBrains IDEA or Eclipse, provide great facilities
for program source code re-factoring. We could also ex-
pect that in the future we will have tools to make changes
on the level of Web services and business processes. For

example, when the definition of a Web service is modi-
fied, an adapter Web service that provides older versions
of the service could be automatically generated. This
adapter can be helpful while migration to the new version
of the service is in progress allowing updates within the
EIS applications one-by-one. But in all cases, decisions
about what refactoring procedures should be performed
are taken on by humans.

Common Coupling Traps
 Along the road to SOA, developers can easily increase
coupling, while thinking they’re decreasing it. Many
coupling traps arise when developers make their systems
conform to some additional requirements and prin-
ciples by compromising its conformance to the original
functional requirements. This often happens because IT
departments are under increasing pressure to minimize
the cost of changes, and developers believe that these
additional principles will simplify modifications in the
future.
 However cost saving techniques that are successfully
applied inside an application do not necessary work
within the context of an EIS. This was discovered a long
time ago (http://citeseer.ist.psu.edu/waldo94note.html),
but many people continue learning it from their own
experience. One of the important techniques that fail is

JDJ.SYS-CON.com42 December 2006

maximally generic, flexible,
and fine-grained interfaces (the
latter technique is sometimes over-
applied even in the context of a
single application).
 Let’s look at the most common
practices that may increase cost of
changes. Although the design pat-
terns described below are accept-
able approaches, in some cases, we
recommend considering them as a
warning sign.

Exposing the Application “As-Is”
 There are a number of tools that
simplify and automate design of Web
services by generating a WSDL docu-
ment from existing code. However,
relying on existing internal interfaces
can lead to the following problems:
• Analysis that was done during ini-

tial application development could
be already obsolete at the time of
WSDL development.

• Technical assumptions of exist-
ing internal components could
be invalid when their functional-
ity is exposed as a Web service.
For example, an invoker could be
specified as a user name param-
eter to method invocation. This
solution could work nicely for
local EJBs that are called from
servlets, because it is assumed
that servlets check user creden-
tials. However if it is exposed as
a Web service, it could create a
huge security hole. Another simi-
lar example is when servlets are
responsible for data validation
and in these cases some business
methods could rely on the servlets
to validate data and skip checking
it.

• Tools do not discriminate between
functional and technical aspects
of existing interfaces. They typi-
cally leak technical aspects of
systems to ESB and often ignore
existing standards for passing
around such technical informa-
tion. For example, client cre-
dentials could be provided in a

custom manner instead of using
WS-Security headers.

• Legacy services usually reflect
technical approaches popular at
the time of their design. If such
services are translated by tools,
they could be extremely ineffi-
cient.

 The recommendation here is to
design WSDL according to business
requirements, ignoring technical
aspects of previously implemented
solutions. Technical aspects are
better expressed independently of
business functions. Development
of a WSDL document should not be
considered a problem, but an oppor-
tunity to specify or double-check the
functionality being exposed.

Over-Generalized Interfaces
 Another interesting trap is over-
generalized interfaces. This trap has
two popular incarnations: CRUD
(Create-Read-Update-Delete) and
vertical industry standards.
 CRUD Web services describe
generic operations over objects
instead of specific business opera-
tions. CRUD interfaces are born out
of the good intention to provide a
single unified interface to all clients.
CRUD operations also make it pos-
sible to generate a large part of the
implementation skeleton using code
generation tools.
 To illustrate problems of CRUD
interfaces, let’s consider the case of a
bank account. There could be opera-
tions to set account properties in a
particular balance. A property might
be updated only by an authorized
request sender. While the CRUD
approach looks very generic, it is
difficult for implementation, use, and
more importantly, security:
• On one hand, it is difficult to

implement such a service. Security
requirements are usually expressed
for high-level operations. For
example, some clients are permit-
ted to deposit money, some to

check an account, and others to
withdraw. To check if a client is
authorized to perform a low-level
operation or update business data,
the service has to guess what a
high-level business action is and
which is actually intended to be
performed. Because authorization
decisions are done inside meth-
ods, it is difficult to understand
security policy without examining
the operations implementation.

• On the other hand, the service is
inconvenient for use by clients.
They need to formulate high-level
business operations in terms of
low-level business data update
operations. This also increases
functional coupling between cli-
ent and server, because the client
has to know how the business
operations affect business data.
If the data schema is radically re-
factored, it will be very difficult to
write a proxy for the old interface.
It is likely that all clients will have
to be updated.

 The rule of thumb is that if a single
operation does different things for
different clients and decisions are
made based on who the invoker is,
this operation should be split into
several independent operations.
 Of course, sometimes CRUD inter-
faces are adequate. For example, they
could be used for communication
between JavaScript code executed on
a client and server side logic. Here,
tight coupling between these two
parts of the solution is rather natural.
However, using CRUD interfaces for
Web services is often the wrong idea.

Vertical Industry Standards
 A less radical variant of the previ-
ous trap is the use of a standard XML
schema for business domain mes-
sages. Pertinent examples of speci-
fications here are OASIS Universal
Business Language and ACORD P&C.
It may seem that such standards re-
duce coupling between systems, but

Decoupling

There are a number of tools that simplify and automate design of
Web services by generating a WSDL document from existing code”“

43December 2006JDJ.SYS-CON.com

actually, their effect on this aspect is
not considerable or absent at all.
 Often these standards declare
a quite generic and flexible XML
language that is able to accommo-
date different business requirements.
However, the target service is usually
able to understand only a subset of
this rich language. Some constructs
are valid for such a language and can
be rejected by a Web service because
they contain unsupported fields or
miss required fields. UBL developers
have noticed the problem and of-
fered a partial solution in the form of
customization guidelines.
 If the schemata are used as is,
implementation of both clients and
servers is more complex. Servers are
required to perform extra valida-
tion checks. Developers of clients
are forced to check each step with
additional guidelines to ensure that
requests will be valid, instead of just
relying on the respective API.
 Although vertical industry stan-
dards can decrease documentation
and interface development efforts,
they often do little to reduce cou-
pling of systems. Moreover, naive
implementation of these standards
can conceal existing coupling prob-
lems instead of solving them.

Fine-Grained Interfaces
 There is a lure to make a system
too fine-grained, i.e., more fine-
grained than actual business opera-
tions. The primary motivation for
this anti-pattern is to increase the
flexibility of the system and to reduce
the volume of the traffic. The system
allows different invocation sequenc-
es, depending on what is required
by clients, so that a client’s costs are
proportional to his needs.
 This is a well-known bad practice
that was understood as anti-pattern
even during CORBA days. A typical
example is expressing a high-level
update operation as a sequence
of property update operations.

However, it still periodically surfaces
because it falls into the exposing
the application “as is” trap. The
problem becomes a latency and per-
request cost of network operations
that consume more resources than
local operations.
 When a business function is split
into too-small pieces, the coupling
also becomes higher because the
business operation becomes imple-
mented by client applications rather
than by the server logic. This also
leads to security problems similar to
ones already discussed above in over-
generalized interfaces.

Coarse-Grained Interfaces
 There is an opposite lure to make
a system too coarse-grained, when
several different business functions
are associated, because they are
implemented by one system.
 ACORD P&C 1.x.x specification is
an example of a specification in the
domain of insurance. A single request
can contain a number of business
requests that create and update dif-
ferent business objects (claims, po-
lices, etc). It is also possible to check
the status of previous requests and
pull results of completed operations.
This is done to reduce the amount
of interactions between clients and
servers. Such an approach results in
complex logic for request processing,
and this complexity is caused not by
the business domain of the specifica-
tion, but by technical decisions to
create a coarse-grained interface on
the system and specify processing
models for requests. As the result,
the technical coupling in the system
is increased since both clients and
servers have to support the specified
processing models.

Conclusion
 RFC1925 says: “In protocol design,
perfection has been reached not
when there is nothing left to add,
but when there is nothing left to take

away” (http://ietf.org/rfc/rfc1925.
txt). Humans naturally strive for
perfection. However, in the rush of
adding new application functional-
ity and integrating existing applica-
tions, this desire often stays unreal-
ized. And to reach perfection, it is
required that managers, analysts,
domain experts, and system archi-
tects closely and confidingly work
together because each of these roles
deals with only a piece of the whole
puzzle.
 Management is aware about the
mission and the structure of their
organization. Knowing needs, goals,
and rules is the essential part of any
change within an enterprise. Ana-
lysts and domain experts can elabo-
rate these goals and rules to software
requirements. Architects know how
to bring these requirements to the
life.
 Coupling is an interesting and
complex problem, which is created
by decisions on many different levels.
High coupling on the level of real
business processes is often caused by
management decisions. High func-
tional coupling is often caused by
the way requirements are distributed
among applications, and it is mostly
the responsibility of analysts and
domain experts. High technological
coupling is often caused by decisions
made by architects.
 While sometimes it is possible to
partially compensate a problem of
one level on other levels, it is still
better to solve it on the level that it
belongs to. RFC 1925 also says: “With
sufficient thrust, pigs fly just fine.
However, this is not necessarily a
good idea. It is hard to be sure where
they are going to land, and it could
be dangerous sitting under them as
they fly overhead.”
 There are tools and methodologies
that help to reduce coupling on each
level. However human intelligence
and creativity are still the best and
indispensable tools.

There is an opposite lure to make a system too coarse-grained,
when several different business functions are associated,

because they are implemented by one system”
“

JDJ.SYS-CON.com44 December 2006

have spent a good part of the last year trying to “wrap”
COM servers in Java for a content management organi-
zation. It had an array of syndication servers supported
by an integrated messaging platform developed using
COM. The purpose of this exercise was to increase the

organization’s market penetration by hooking on to the J2EE
bandwagon across multiple platform configurations. With
so many different complex COM servers to work with, some
supporting automation and others not, I struggled with the
all too familiar JNI cycle…code, crash, code some more, and
then crash. Literally speaking, I must have brought down the
JVM hundreds of times. To top it off, some syndication servers
worked on a “pull” mechanism, they could pull the content
out from the interfacing repositories. This meant bi-directional
access and an event-based interoperation.
 I had a look at some Open Source projects, but they were all
using native libraries and didn’t sufficiently meet the require-
ments in hand. Ultimately, we did complete a scaled-down
version of the project. I’m quite sure that most of the require-
ments could have been handled if a non-native solution (in the
Open Source community) existed to COM interoperability.
 There are a number of reasons why I believe JNI shouldn’t
be used for accessing COM. It may work well for a small-sized
project (two or three COM servers, no bi-directional access,
etc.). But for any serious initiatives, I think it has certain
drawbacks. Though JNI is Java, you still need to know a lot
more about the native component and the target architecture
before accessing its services. One has to be proficient in Java
and in the native programming language as well (some Open
Source projects are trying to address this complexity, i.e., trying
to abstract JNI itself). With increasing demands to deliver on
time – before time, and the delivery having quality, it’s usually
hard to find such cross-platform resources. The native and Java

layers are so tightly coupled that having dedicated resources
for each proves more of a headache than a solution.
 I’m pretty sure that it’s obvious to you that by linking with
native code, JNI takes away one of the most powerful features
of the language itself, “platform independence” (write once,
run anywhere). It binds the application to the host platform.
For example, when using JNI in a Windows environment, the
Java application is forced to rely on the native DLLs for its
functionality. The same application can’t be ported with-
out porting the native library to another platform. This also
requires a proxy/stub approach when you want to access a
COM server from Unix. This is an invasive procedure (you are
deploying a potentially unknown code on the machine where
the COM server is located, even if it’s in the same intranet) and
may not be allowed by the administrative policies governing
the domain.
 Another disadvantage, when linking with native code is the
instability it may bring with it. A poorly written DLL (speaking
of Windows) will bring down an entire JVM, taking with it some
vital applications. And of course, try debugging that!
The architectures built on JNI look more or less like Figure 1.
 Okay well…so what can be done about it? I sat down some
months ago to develop an open source library that implements
the DCOM protocol, thus allowing for pure, non-native, bi-di-
rectional interoperability with COM servers.
 I’ll try explaining my work in two steps. First I’ll give you
a primer on DCOM and its inner workings and then I’ll talk
about j-Interop. If you know how DCOM functions <i> under
the hood</i>, you can skip to the section about j-Interop.

DCOM: What and How
 Distributed COM or DCOM is a high-level network proto-
col developed to provide location transparency to COM-
based components. The keywords being network protocol
and location transparency. Traditional COM components can
only perform inter-process communication across process
boundaries on the same machine. DCOM uses an RPC
mechanism to send and receive information transparently
between COM components (clients and servers) on the same
network. DCOM was first made available in 1995 with the
initial release of Windows NT 4. Essentially, it serves the same
purpose as CORBA or RMI. Please have a look at Figure 2.
 In terms of an ISO OSI protocol stack, this is how it looks
(see Figure 3).

Vikram Roopchand is a

Technical Architect working for

Infosys Technologies Ltd.

 (www.infosys.com). He has

about 8.5 years of experi-

ence and specializes in Cross

Platform development across

Content Management and

Business Intelligence domains.

vikram_roopchand@infosys.com

by Vikram Roopchand

I

 A search for pure, non-native,
bi-directional interoperability with COM servers

Feature

j-Interop: An Open Source Library
 for COM Interoperability Without JNI

 Figure 1

Java Applications

Java Virtual Machine

Native
DLL COM Servers

Java Native
Interface

45December 2006JDJ.SYS-CON.com

 As you can see, DCOM is an application level protocol.
It leverages most of the functionality offered by DCE/RPC
(see the side bar for a brief overview of DCE/RPC). Since
DCE/RPC isn’t naturally object-oriented, Microsoft’s
implementation enhanced the protocol by adding new
constructs and providing different meanings to some of the
packet fields. This enhanced protocol was christened the
Object RPC (ORPC) or MS-RPC. Another significant change
that Microsoft made to the protocol was the addition of an
NTLM Security Service Provider. One disadvantage of this
was the impossibility of any interoperability with other
implementations of DCOM on platforms that don’t have
NTLM, since NTLMSSP is available only in MS-RPC.
 Let’s see how DCOM works.

DCOM (MS-RPC): Under the Hood
 The best way to explain the inner workings of DCOM
would be by creating a (COM) client/(COM) server ap-
plication. I’ve used Visual Studio to create one. Since
“how” to create a COM server (from now on referred to as
a COM component) is outside the scope of this article, I
won’t be mentioning it here. It’s best left for a tutorial.
 Our COM component is an “out of process” server, i.e.,
an EXE. For the sake of brevity, it has a single interface
“ITestCOMServer” that has a single API call, “Add,” that
adds two integers and returns the result. Also note, this
example is void of any error checks.

HRESULT Add (int x, int y, [out] int* result);

 The COM client will execute this API.
 The first step is to obtain the “handle” to the COM class
serving this interface. The following calls instantiate the
COM server and also provide a pointer to its IUnknown
interface.

IUnknown *ptrUnknown = NULL;

IITestCOMServer *ptrTestServer = NULL;

HRESULT hr = CoCreateInstance (CLSID_ITestCOMServer, NULL,

CLSCTX_REMOTE_SERVER, IID_IUnknown, (void**)&ptrUnknown);

 The second step entails getting a pointer to the actual
interface in which the “Add” method resides.

hr = ptrUnknown->QueryInterface(IID_IITestCOMServer,

(void**)&ptrTestServer);

if (FAILED(hr))

{

cout << “Failed to get interface pointer, quitting”;

}

 The third step requires us to execute the “Add” API on the
pointer obtained in step 2.

else

{

 int *result = new int;

 hr = ptrTestServer->Add(1,2,result);

 cout << “result of Add is “ <<*result;

delete result;

}

 The last step is to release all references to the COM server
and let the COM runtime garbage collect it.

if (ptrTestServer)

{

ptrTestServer->Release();

}

ptrUnknown->Release();

 Simple isn’t it? Well, the COM runtime does a lot of
work to orchestrate this cycle. Let me try to give you an
overview of what happens behind the scenes. (Sources:
www.opengroup.org, www.msj.com March 1998, DCOM
specification)
1. Each Windows machine on the network has a subsys-

tem known as the Service Control Manager (not to be
confused with the Windows “Services” system). It’s
a DCE/RPC server that listens at port 135 and runs
inside rpcss.exe. The SCM makes sure that when a
client request is made, the appropriate COM server
is connected and ready to receive the request. It pro-
vides an RPC interface, known as IRemoteActivation,
which has only a single operation, “RemoteActivation,”
designed to activate a COM server on a remote
machine. This, by the way, is an important difference
between DCOM and classic RPC where the server must
be running before the client can connect to it. The
SCM resides at well-known endpoints, one for each
supported network protocol (135 for TCP/UDP).

 2. When the client gets a “CoCreateInstance” call with the exe-
cution context set as Remote (CLSCTX_REMOTE_SERVER
specifies to the runtime that the COM server is located on a
remote machine), the COM runtime consults the Windows
registry for the “RemoteServerName” named-value. This
value is located at [HKEY_CLASSES_ROOT\APPID\(CLSID
of TestCOMServer)]. If a machine name is found under this

 Figure 2

COM Client COM Server

COM Runtime

Protocol Stack Protocol Stack

COM Runtime

DCE/RPC Security
Provider

DCE/RPC Security
Provider

DCOM
Network
Protocol

 Figure 3 Windows TCP/IP based stack on Intel Platform

Application

Presentation

Session

Transport

Network

Data Link

Physical

DCOM

NDR

DCE/RPC

TCP

Internet Protocol

Network Driver

Ethernet Card

JDJ.SYS-CON.com46 December 2006

key then the request to activate the COM server is forwarded
to SCM on that remote machine. The remote SCM uses the
IRemoteActivation interface to activate the object identified
by CLSID_ITestCOMServer.

3. What does it mean to “activate” a COM object? We will get to
that after I talk about the IOxidResolver. I think it’s important
to clear these basics up otherwise things could become quite
confusing.

 Each machine that supports the COM network protocol
supports a one-per-machine service known as the “OXID
Resolver.” Like the SCM, it also contains an RPC interface
“IOxidResolver.” Oxid Resolver performs many important
operations, primarily maintaining the binding information
necessary to connect to the COM components being export-
ed. It also takes care of keeping the exported objects alive
by receiving pings from the COM clients (otherwise they’d
be garbage collected) and does lazy protocol registration for
servers scoped by the Oxid Resolver. I’ll explain this last point
a bit more. Each COM server can decide to support a certain
set of protocols over which it can be contacted. For example,
a server may want to answer only on UDP or TCP or HTTP
or all three. Instead of reserving ports for each protocol even
before it’s activated, a server delays this to the time it’s actually
activated on a requested protocol. This is quite useful in pre-
venting the machine from running out of ports.

4. Okay, coming back to activation. Activation should be seen
as a set of activities that bring a COM server to a “ready to
receive requests” state. In general, it means locating the
COM server on the remote machine using the Windows
registry, registering its connection information with the Oxid
Resolver, marshaling the reference to its IUnknown (rather the
“IRemUnknown”) interface, and sending it back to the callee
(explained in step 7).

5. On the remote machine, when the server is started by its
SCM, two activities take place.
• The server is associated with an “object exporter” and

assigned an object exporter identifier (OXID). An object
exporter keeps track of all the interfaces (like in our case
ITestCOMServer), which this COM server will export or
import.

• The COM runtime also associates an “Oxid Object” with
the COM server, which implements the COM interface
“IRemUnknown.” It forms the remote proxy for the
base “IUnknown” interface. Please note the standard
IUnknown interface is never remoted in COM. In its
place, the IRemUnknown interface is remoted and results
in local calls to QueryInterface, AddRef, and Release on
the server.

 At activation time, the RPC binding information of the
OXID is also registered with the server-side OXID Resolver.
These are full bindings carrying the “How-To-Connect”
information (including the supported protocol/port com-
bination) of the COM server. This information is used by
the underlying RPC mechanism of the client system to
initiate a session with the COM server. One more point
worth mentioning is that during activation the server has
the choice of being “ready” now or waiting for the first call
to come (lazy activation). Usually all servers prefer to be
lazy till an actual call comes (initially IRemUnknown) on a
specific binding.

6. I’ve talked about the SCM and the Oxid Resolver
 service. They are important infrastructure services. One

 provides for activation and the other for discovering the
 path and means to the activated object.

7. Up until now, in executing “CoCreateInstance” we’ve been
 able to activate a COM object. We still need to return the
 interface pointer, which will uniquely identify this activated

 COM object and allow us further operations on it (like a
 QueryInterface). Microsoft extended the Network Data
 Representation (the presentation layer protocol responsible
 for packaging semantics of the DCE/RPC datatypes) to

 add the concept of a “Marshaled Interface Pointer”
 (MIP from hereon). The MIP symbolically represents an
 interface reference to an object. It consists of two elements,
 an array of bytes and a marker specifying how to interpret
 this array of bytes. There are three variations to the

 interpretation, but I’ll stick to the STANDARD type.
 The array of bytes representing the STANDARD
 interface pointer consists primarily of a 128-bit GUID

 known as IPID, short for interface identifier, that uniquely
 identifies an interface – it has a one-to-one mapping with

 each marshaled interface, i.e., ITestCOMServer will have
 a single IPID – an OXID and a 64-bit object ID (OID) that
 uniquely identifies the object on which the IPID is found.
 There’s one-to-one mapping between an object instance

 (implementing one or more interfaces thus IPIDs) and
 the OID. This OID is quite useful during pinging. Along

 with all this the MIP also contains the full bindings for the
 OXID Resolver service running on the remote machine.

8. When the marshaled interface pointer is returned to the
 client side through the server-side and client-side SCMs,

 the COM runtime extracts the OXID, addresses the remote
 OXID Resolver from MIP, and calls the ResolveOxid()
 method on its local OXID Resolver to get the bindings
 (“how to connect” information) identified by the OXID (it
 has to reach the COM server now for further operations).
9. The clients-side OXID Resolver checks to se if it has

 a cached mapping for the OXID; if not, it invokes the
 ResolveOxid() method of the server-side OXID Resolver

 – it can since it has the address information from the
 MIP – which returns the registered RPC binding of the

 COM server.
10. The client-side Resolver caches the mappings, and
 returns the RPC bindings of the COM server to the
 COM runtime. This lets the runtime create an RPC

 channel that’s connected to the Object exporter of the
 COM server.
11. The CoCreateInstance call is now complete.

 Phew! I have drawn a picture to explain this entire cycle,
just follow the alphabet.
 I hope I was able to provide a concise introduction
to the discovery and activation cycle. Let’s see how the
“QueryInterface” works and how the API call “Add (…)” is
handled.
12. The remote connection has now been established and
 we have an interface pointer to the remote IUnknown
 (the “IRemUnknown”). A QueryInterface () call to
 obtain the “ITestCOMServer”” interface will result in

 the following activities taking place.

Feature

47December 2006JDJ.SYS-CON.com

13. When the client invokes the IUnknown::Query-
 Interface, the COM runtime invokes the IRem-

 Unknown::RemQueryInterface method on the
 OXID object in the target object exporter. The

 OXID object then invokes the QueryInterface()
 method on (possibly multiple) interfaces in the
 exporter (remember, the exporter knows all the
 interfaces the COM server has exported out). Please
 note that the IRemUnknown::RemQueryInterface

 method differs from the IUnknown::QueryInterface
 method since it can request several interface pointers

 in one call. The standard IUnknown::QueryInterface
 method is actually used to carry out this request on

 the server side.
14. If found, the requested interface from the COM
 server is then marshaled as a MIP and sent back
 to the callee. This MIP carries a new IPID symboli-
 zing this interface. The OXID and OID remain the
 same.
15. Now that we have the interface pointer let’s call “Add”

 on it. Upon receiving the ptrTestServer->Add(1, 2, int
 *) call, the COM runtime marshals the parameters in
 the NDR format and channels the request to the target
 object exporter identified by the OXID-resolved RPC
 binding (we did that in steps 9 and 10).
16. The COM runtime on the server side finds the tar-
 get interface based on the IPID that’s contained in the
 RPC header. This IPID is of the ITestCOMServer inter-
 face that was returned to the client during a previous

 QueryInterface call.
17. With the help of the Object exporter, the COM
 runtime invokes the method Add(…) on the correct

 interface of the COM server object and marshals
 the return values in the NDR format. These values
 are sent back to the callee using RPC infrastructure.
18. The same cycle follows during the Release() call, the
 COM runtime invokes the IRemUnknown::RemRe-
 lease() method on the OXID object in the target object

 exporter. The OXID object then invokes the Release()
 method on (possibly multiple) interfaces in the
 exporter.

 This completes the entire cycle of obtaining an inter-
face, executing an API on it, and subsequently releasing it.
There’s an additional task that the COM runtime also does
and that’s keeping the COM Server objects alive during
a session. This is done via a ping mechanism. Pinging is
carried out on a per-object (per-OID), not a per-interface
(per-IPID) basis. Architecturally, at its server machine,
each exported object (each exported OID) has associated
with it a “ping period” that must elapse without getting
a ping on that OID before all the remote references to
IPIDs associated with that OID can be considered to have
expired. Once expiration has occurred, the interfaces
behind the IPIDs might get reclaimed (exactly when is
implementation-specific).
 I’ve tried to keep the explanation of DCOM internals as
simple as possible. There’s much more that happens, but
I’m running out of space and I think you’re running out of
patience, so let’s get to j-Interop.

j-Interop
 Suffice it to say j-Interop implements almost the entire
DCOM protocol with its own Oxid Resolver service, pinging
mechanism, Object exporter, etc. These are required for
handling event callbacks, proxying a Java server in place of
a COM server (bi-directional access), and making sure that
the COM server isn’t garbage collected while a client is con-
nected to it and vice versa.
 The library comes with pre-implemented packages for
automation. This includes support for IDispatch, ITyp-
eInfo, and ITypeLib. For more flexibility, it provides an API
set to invoke operations directly on a COM server without
going through automation. Another important feature is to
allow full access and manipulation of the Windows Registry
in a platform-independent manner.
 The implementation has been tested on all advanced
Windows and Fedora platforms and displays upward com-
patibility from JRE 1.3.1. For more technical specifications
please visit http://j-interop.sourceforge.net.
 I’ll show you an implementation using j-Interop to call
the ITestCOMServer from Java is Listing 1.
 As you can see it’s pretty straightforward. The ITestCOM-
Server supports the IDispatch interface. I’ve shown both
ways of accessing the COM server, i.e., via the dispatch
interface as well as via a direct call. From my experience, I’d
suggest using the IDispatch interface, whenever it’s avail-
able. It’s much easier to program that way.

 Figure 4

DC E/RP
C

Se curity
Provider

OXID Resolver
Se rv ice

COM Client

DCE/RPC Security
Provider

COM Runtime

Protocol Stack

Local Machine Remote Machine

Activation

COM Server

F F’

Object Exporter OXID Object

IRemUnknown

G. OXID for the
 exported COM
 server

H. Marshaled
 interface pointer

E
IRemoteActivationIRemoteActivation

A

DB

I
J

A
C

SCMSCM

Windows
Registry

Windows
Registry

K. ResolveOxid for OXID
 obtained from MIP

OXID Resolver
Service

M. CoCreateInstance
 is now complete

L. Since the local OR does not have it,
 it will ask the remote OR whose
 bindings are present in the MIP,
 the bindings to the actual COM
 server (or rather it’s OXID Object)
 will get returned back, which this
 OR will cache

 DCE/RPC stands for Distributed Computing Environment/Remote

Procedure Calls. It originated from Network Computing System (NCS) RPC

developed by Apollo (which later got acquired by HP).DCE/RPC specifies a

complete set of APIs and Models to abstract the usual nuances of an RPC

system like a named lookup, subsequent handshake\binding, passing of

call data between two parties , handling communication errors, security

etc.. It provides protocol support for both Connectionless and Connection

Oriented communication and has a wide transport base, UDP, TCP/IP, SMB,

HTTP to name a few. It also has a generic security model supporting several

authentication mechanisms such as DCE, Kerberos and GSSAPI.

 The full specification can be obtained from www.theopengroup.com.

DCE/RPC

JDJ.SYS-CON.com48 December 2006

 Figure 5 is normally how a Windows COM client com-
municates with its COM server. j-Interop does this as well
and so for the COM server it’s like an ordinary COM cli-
ent. Whether the Java application is on Windows or Unix,
it doesn’t matter.
 More examples and documentation can be download-
ed from the SourceForge site mentioned previously.
 The advantages offered by using a non-native library
like j-Interop include:
• Clean integration of two of the leading technologies

without writing any native code: j-Interop eliminates
any need to write native (JNI) DLLs, cutting develop-
ment time, and shortening the entire software lifecycle
for the products (based on j-Interop). Such products
are also saved from any kind of instable functions that
result from poorly written native code (DLLs).

• Accessing COM components from any type of Java cli-
ent, including applets, EJBs, servlets, JSPs, and stand-

alone applications: Since it’s pure Java, j-Interop can
be used within any J2EE server and on any platform
(that supports Java).

• Maximizing reuse of existing Java and COM compo-
nents: All the plumbing on interoperating with

 COM servers is done by j-Interop, it makes reusing
same components again, instead of porting back

 and forth between domains, a more lucrative and
viable option.

• There should no longer be a dependency on cross-
platform resources thus minimizing cost and im-
proving quality: The same resources for Java can

 be used without any additional training/competency
building and the turnaround time can be brought
down substantially. Not having to deal with native
code also removes the complexity associated with
maintaining the same. The code is now much

 cleaner and distinctly segregated between the two
domains. Debugging the projects based on j-Interop
is substantially easier than debugging JNI-based

 DLL projects.
• Easier deployment since there’s no custom code

at the server: No special treatment has to be given
to j-Interop clients, they just behave like standard
DCOM clients. This is a big advantage in terms of
administering the machines where the COM servers
are deployed. The administrator doesn’t have to care
about security or the instability of native components
bringing the server down (Denial of Service).

Feature

Listing 1

 public TestCOMServer(String address, String[] args) throws

JIException, UnknownHostException

{\

JISession session = JISession.createSession(args[1],args[2],args[

3]);

 //instead of this the ProgID “TestCOMServer.ITestCOMServer” can

be used as well.

 //comStub = new JIComServer(JIProgId.valueOf(session,”TestCOMSer

ver.ITestCOMServer”),address,session);

 //CLSID of ITestCOMServer

 comStub = new JIComServer(JIClsid.valueOf(“44A9CD09-0D9B-4FD2-

9B8A-0151F2E0CAD1”),address,session);

}

public void execute() throws JIException

{

 unknown = comStub.createInstance();

 //CLSID of IITestCOMServer

 IJIComObject comObject = (IJIComObject)unknown.

queryInterface(“4AE62432-FD04-4BF9-B8AC-56AA12A47FF9”);

 dispatch = (IJIDispatch)ComFactory.createCOMInstance(ComFactory.

IID_IDispatch,comObject);

 //Now call via automation

 Object results[] = dispatch.callMethodA(“Add”,new Object[]{new

Integer(1), new Integer(2), new JIVariant(0,true)});

 System.out.println(results[1]);

 //now without automation

 JICallObject callObject = new JICallObject(comObject.getIpid());

 callObject.setOpnum(1);//obtained from the IDL or TypeLib.

 callObject.addInParamAsInt(1,JIFlags.FLAG_NULL); //setup the

first int param

 callObject.addInParamAsInt(2,JIFlags.FLAG_NULL); //setup the

second int param

 callObject.addInParamAsPointer(new JIPointer(new

Integer(0)),JIFlags.FLAG_NULL);

 //Since the retval is a top level pointer , it will get

replaced with itʼs base type.

 callObject.addOutParamAsObject(Integer.class,JIFlags.FLAG_NULL);

results = comObject.call(callObject);

 System.out.println(results[0]);

}

 Figure 5

Java Applications

Java Virtual Machine

COM Servers
DCOM

(MSRPC)

j-Interop
Library

����
�������
���������
�������
���������

COPYRIGHT ©2006 SYS-CON MEDIA ALL RIGHTS RESERVED NOTE: SPEAKER LINE-UP SUBJECT TO CHANGE WITHOUT NOTICE

��

����������������������������

“ ���������������������������
� �����������������

“ �����������������������������
� ���������������������������

“ ����������������������������
� ������������������������������

“ �����������������������������
� �������������������������������
� ���������

���

���

���

��

��

���

���������������
������������
����������������

���������������
������������
��������������

����������������������

����������������������������

������������������������������
����������������
������������������
���
���
� � ��������������������������������
�� � �������������������������
������������������������

��
������������������������������������
����������������
�����������������������������
���
� ��
���������������������������
� � ����������
� � ����������������������������
� � ����������������������������
� � ��������������������
��������������������������������������
�����������
������������������������������������
� � �������������������������������
� � �����������������������������������
� � �����������������
� � ���������������������������
� � ����������������
�����������������������������������
� � ���������������������������������
� � ������������������������������
��������������������������������
����������������

��������������������������������������
��
��
���
� ��
� �����
���
� �������������������������
�������������������������������������
���������������������������������������
����������������������������������

��
��
��
�� � �������������
�� � ����������
� � ����������
� � ����������������������
� � ��
� � ������
�����������������������
��
��������������������������
��
� ������������������
���
���
������������������������������
���������������������������������������

����������������������
��
��
������������������������������
�������������������������
���

��
������������������������
���
�� ������������������������������
���
�� �����������
���
� �������������������������
��
� �������������������

����������������������
����������������������
�����������������
����������������������������������
����������������������������
������������������
�����������������
�������������������
���������������������������
����������������������������

���������������������
���������������������������������������
��
���������������������������������
�����������������������������������
���������������������������������������
��
� ��������������
��������������������������
���
�� ���
� ���������������������
��
� ������������

��

����������������������

��

*ALL RELEVANT COURSE MATERIALS WILL BE OFFERED ON DVD AFTER THE EVENT

JDJ.SYS-CON.com50 December 2006

he year 2006 marked the tenth
anniversary of the Java language
and for me is the most signifi cant
in its history.

 The most important event was the
announcement that a GPL version of
Java SE will be available sometime in
the fi rst half of 2007. If nothing else, all
the back and forth “will they, won’t they”
discussions over open source have been a
distraction for the Java community. They
also provided a source of FUD to those
who don’t believe in Java, enabling them
to describe the community as divided,
fragmented, and imploding under its own
mass of internal fi ghting. I don’t believe for
a second that any of this was actually oc-
curring; however, some customers I spoke
with did have this perception of divided
community. Far from it, the Java commu-
nity is an incredibly healthy place where
the pace of innovation and ability to adapt
occurs faster than in any other technol-
ogy space. The ingredients for this are
the mixture of mom and pop teams who
create elegant and nimble frameworks
that become overnight de facto ways to
do validation, navigation, or persistence,
while working hand in hand with large
organizations whose stock value is based
on reliability, serviceability, and portability
of the language. Every JavaOne question
and answer session I’ve attended over the
years invariably had someone in the audi-
ence standing up and berating an onstage
developer for a particular bug that hadn’t
been fi xed for the last n years. The answer
was always one of prioritization and that
the development team had more line
items than they could accomplish with
the available resources. For the questioner
it’s an answer akin to, “Your top problem
didn’t make our top 500.” Now the reply
can be, “Would you like to be a committer?
Would you like to help us do some testing
with our release so we can verify your
patch?” It’s welcoming, it’s inclusive, it’s
how to move things forward, and for me it’s
the fuel for the feedback loop that makes
open source community projects become
better at a rate that equals the number of
smart, willing, and motivated users.

 The second most signifi cant event
for me in 2006 was the announcement
of the Google Widget Toolkit (GWT)
(http://code.google.com/webtoolkit/).
It’s a brilliant piece of work designed by
some very talented people at Google.
From a solution point of view, GWT allows
developers to write Java code that can be
deployed in a browser and achieve the
kind of dynamic Web 2.0 functionality
that all the Web heads get excited about.

Under the covers it does this by compil-
ing the Java to be deployed as a mixture
of HTML and JavaScript. What’s exciting
about GWT isn’t just that it’s a very cool
piece of technology, but also the concept
behind how it is using the Java language.
Java’s founding mantra is “write once, run
anywhere.” For most of us this translates
into “compile to bytecodes and run on a
JVM that abstracts the operating system.”
This doesn’t always meet the scenario,
however, as evidenced by something like
Java applets that are no longer relevant to
all but a few die-hard Web page develop-
ers. In their place the “cool effects” brigade
resort to stuff like AJAX, Flash, and other
technology that, while optimized for
browser deployment, are certainly not
optimized for development. Watching an
AJAX developer is rather like watching a C
coder of yore struggle with primitive tools
and obtuse syntax. Java applets failed
because they treated the browser as a
delivery mechanism for .class fi les to the
desktop that needed to have a compat-

ible JRE. What if instead you regarded the
browser as a smarter beast and used its
APIs as a virtual machine you could run
within? This is the magic of GWT: it takes
the beauty of the Java language with its
plethora of high-level development tools
and programming suites, then compiles
this to HTML and JavaScript. Java has now
become a fourth-generation language
with the browser being the runtime.
 The third most signifi cant event for
me in 2006 goes jointly to Eclipse and
NetBeans.
 Eclipse celebrated its fi fth birthday as
an open source project, and it’s one that
has gone from strength to strength each
year. I’ve been fortunate to have been
involved with Eclipse from the outset and
the thing that pleases me most each year
at their annual EclipseCon conference is
how the buzz and excitement moves and
changes around. One year Web tools are
the hot topic, the next year it’s the rich
client platform. Not only does the technol-
ogy’s focus shift, but the people do too, as
new companies and new stars shape and
drive its future.
 NetBeans is often seen by some as a
rival to Eclipse and vice versa, viewpoints
I used to hold myself. I regard them differ-
ently now, with NetBeans holding the bat-
tle standard for Java, giving it a sweet-tast-
ing all important out-of-the-box fi rst kiss
experience, a platform that keeps pace
with the latest JSRs and language features
so they are showcased in IDE samples and
tooling rather than PDF specifi cations; a
tool is to Java what VisualStudio is to the
Microsoft runtimes. For Java to remain
relevant and grow in the next 10 years, we
have to look at those companies in whose
interests it is to see us fail, work out what
makes them successful, and compete with
them on their own fronts. The key battles
will be fought in ease of use, growth and
adoption by customers who feel confi dent
and secure in its future, and adaptability
to new scenarios. Java’s tenth year laid
down some very fi rm roots to enable it to
compete in all of these spaces, and I hope
that the next 10 bear fruit and see the
language go from strength to strength.

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

Ten Brilliant Years

T

Joe Winchester is

a software developer

working on WebSphere

development tools

for IBM in Hursley, UK.

joewinchester@sys-con.com

The terms on everyone’s lips this year include “AJAX,” “Web 2.0” and

“Rich Internet Applications.” All of these themes play an integral role at

AjaxWorld. So, anyone involved with business-critical web applications

that recognize the importance of the user experience needs to attend

this unique, timely conference – especially the web designers and

developers building those experiences, and those who manage them.

BEING HELD MARCH 19 - 21, 2007!
We are interested in receiving original speaking proposals for this

event from i-Technology professionals. Speakers will be chosen

from the co-existing worlds of both commercial software and open

source. Delegates will be interested in learning about a wide range

of RIA topics that can help them achieve business value.

NEW YORK CITYNEW YORK CITY

CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYN
CHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT

ND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRO
NOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND
XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS

Rich Internet Applications: AJAX, Flash, Web 2.0 and Beyond...Rich Internet Applications: AJAX, Flash, Web 2.0 and Beyond...

REGISTER TODAY AND $AVE!

©COPYRIGHT 2006 SYS-CON MEDIA. ALL RIGHTS RESERVED

SYS-CON Events is proud to announce the
AjaxWorld East Conference 2007!

The world-beating Conference program will provide developers and IT managers alike

with comprehensive information and insight into the biggest paradigm shift in website design,

development, and deployment since the invention of the World Wide Web itself a decade ago.

www.AjaxWorldExpo.com

T H E R O O S E V E L T H O T E L L O C A T E D A T M A D I S O N & 4 5 t h

by Jeremy Geelan

SYS-CON Media’s
Annual Poll of
Industry Prognosticators

Predictions

Where’s
i-Technology

Headed in

2007
 t the end of each year, when SYS-CON informally polls

 its globe-girdling network of software developers, industry

 executives, commentators, investors, writers, and editors,

 our question is always the same: where’s the industry

 going next year?

 Every time, the answers are surprisingly different from

the year before, and of course throw light not just on

where the industry is going but also how it’s going to get

there, why, because of who, within what kind of

time-scale – all that good stuff.

Enjoy!

 its globe-girdling network of software developers, industry

 executives, commentators, investors, writers, and editors,

 our question is always the same: where’s the industry

 going next year?

JDJ.SYS-CON.com52 December 2006

53December 2006JDJ.SYS-CON.com

Ruby on Rails • JRuby • AJAX • Rules-Based Programming

JASON BELL
Enterprise Developer, Editorial Board Member,
Java Developer’s Journal

 My predictions for 2006....

1. Incremental mainstream adoption of Ruby on Rails
It’s going to happen, isn’t it? Keep an eye out for Sun’s
offering of JRuby. Whether this is the death of other open
source scripting languages like Groovy remains to be seen.
Ruby has been a wake-up call and has now drawn the line
dividing serious scripting languages from “hobby” languag-
es (ones that wouldn’t see enterprise adoption). For me,
my job just got a whole lot easier, a whole lot quicker.

2. A slowdown in the AJAX hype
I think the shine has worn off. There are some nice appli-
cations about but at the end of the day it’s a Web page
with some very fancy JavaScript.

3. 2007 is the year of the business rule
Rules-based programming will be big business. With the
likes of JBoss acquiring Drools it’s certainly an area to
keep an eye on.

LAMP • REST • ATOM • Apple

DAVID HEINEMEIER HANSSON
Creator of (Ruby on) Rails

1. 2007 will be the year where LAMPers finally decide to
stop being neutral about the WS-* mess and pick the side
of REST: the next wave of Web APIs will stop supplying
both a SOAP and REST API and just go with the latter.

2. On the leading edge, we’ll see the same for RSS vs ATOM.
For techies in the know, ATOM will become the assumed
default syndication format and that’ll mark the slow
decline of RSS (though more as a technology than as a
brand, RSS will remain synonymous with feeds).

3. Apple will continue to trounce everyone else for the
preferred geek platform. The stigma of being a Web pro-
grammer still using Windows will increase.

Vista • Office 2007 • Zune • AJAX • Ruby • Java
 Ruby on Rails • Flash Memory

GARY CORNELL
Founder & Publisher, Apress

 In no particular order:

1. IE 7 will have a fast adoption curve and so Firefox will

cease gaining market share.
2. Vista will have a slow adoption curve.
3. Office 2007 will have a slower adoption curve.

4. Oh, the Zune will have no adoption curve.
5. The AJAX bandwagon will gain even more speed.
6. Ruby’s momentum will slow down as Python and PHP

 frameworks to combat Rails grow in popularity.
7. The open-sourcing of Java will have no effect whatso-
 ever on Java’s slow decline in favor of dynamic
 languages (Ruby, Python) and C#.
8. Sales of high powered desktop will slow.
9. Apple will no longer gain market share for its desktops

 and will stabilize at its current meaningless level.
10. Ultra lightweight notebooks based on flash memory with

 instant on/off will start coming out in large numbers.

SOA & Web 2.0 • “Outside-In SOA” • Semantic Web • AJAX

DAVID S. LINTHICUM
CEO, The Linthicum Group

1. The worlds of SOA and the Web 2.0 blur together. While
many who think SOA don’t think Web 2.0, and many who
think Web 2.0 don’t think SOA, those days will come to a
fast end in 2007. So, what does this mean to those standing
up SOAs today? It’s clear that many of the services we con-
sume and mange going forward will be services that exist
outside of the enterprise, such as subscription services
from guys like Salesforce.com, or perhaps emerging Web
services marketplaces from guys like StrikeIron, Google,
Amazon, and others. This is outside-in SOA, in essence
reusing a service in an enterprise not created by that enter-
prise, much as we do today with information on the Web.
Thus, those services outside of the enterprise existing on
the Internet create a Universal SOA, ready to connect to
your enterprise SOA, perhaps providing more value.

2. The rise of the Semantic Web. The Semantic Web is the
abstract representation of data on the World Wide Web,
based on the Resource Description Framework (RDF)
standards and other standards. Although this notion has
been around for some time, in 2007 it will greatly affect
how we design, build, and deploy Web 2.0 applications
and SOAs, providing a mechanism to track and leverage
application semantics, local and remote.

3. Enterprise applications continue to move outside the
enterprise. With the success of Salesforce.com and many
others, we’ll continue to see applications move to the Web
including accounting, CRM, HR management, logistics,
inventory management, etc. While many Global 2000 com-
panies will fight this trend, the success of the younger and
more nimble up-starts will drive this movement quickly.

4. The success of AJAX drives traditional software back to the
drawing boards. With the ability to finally provide dynam-
ic rich content and applications over the Web, traditional
software vendors will find that they need new products to
play in this new world. Indeed, as Google Mail is giving
Microsoft fits, so will other more innovative Web-delivered
applications leveraging rich client technology such as
AJAX. Entire interfaces will have to be rewritten to support
AJAX, and end users will demand that we move away from
traditional pump-and-pull HTTP programming.

Jeremy Geelan is group

publisher of SYS-CON Media

and is responsible for the

development of new titles

and technology portals

for the firm. He regularly

represents SYS-CON at con-

ferences and trade shows,

speaking to technology audi-

ences both in North America

and overseas.

jeremy@sys-con.com

JDJ.SYS-CON.com54 December 2006

Mobile AJAX • “Mobile Web 2.0” • SMS • LBS
Flash Lite • On-Device Portals

LUCA PASSANI
Wireless Guru & Technology Evangelist, Openwave

 Here are my predictions for 2007:

1. AJAX will still be hyped, but we will still see no mobile AJAX-based
killer apps, only proofs of concept.

2. JAVA ME will not gain much more ground. Too fragmented.
Games and some other apps. No killer apps though.

3. What people call “Mobile Web 2.0” is not Web browsing. Saying that
mobile and Web will converge is trendy in some environments
these days. This is wrong and that’s hardly surprising: people buy
phones to make calls, not to browse the Web, so why should we
expect phones to get so much better at browsing the Web?

4. SMS will still represent 80% or more of data traffic. The rest will
be downloads: ringtones, wallpapers and games. WAP will be
mostly used as a discovery mechanism to get to those contents.
Reformatting proxies to adapt Web content for mobile will be
implemented by most operators. They will increase browsing a
bit, but nothing earth-shattering.

5. Not sure about Location-Based Services. LBS have been on the
verge of explosion for some time now.

6. Flash Lite will make significant progress in Europe and North
America, also on operator portals.

7. On-Device Portals are an interesting development: content gets
pushed to devices while the user isn’t watching and they may
decide later to buy it or not. This will be trendy next here. It will be
interesting to see which actual implementations of the concept
deliver.

8. More people will realize that device fragmentation is one of the
main hurdles for mobile.

Flash Memory • AJAX Productivity • Red Hat • Vista
Notebooks • Ubuntu

MARK HINKLE
Editor-in-Chief, Enterprise Open Source Magazine

Here are my predictions:

1. Flash-bootable PCs – It’s been a long-time coming but laptop
PCs will start booting from flash memory. This will make a huge
difference in battery life. Intel will lead the way pushing their
NAND flash boot memory on a new laptop platform and Apple
will be among the first to adopt. The One Laptop per Child
initiative will also provide a demonstration of the first zero disk
drive PCs albeit small. Devices like this will inspire creativity
on higher end models especially as the price of non-volatile
memory continues to drop.

2. New Crop of AJAX Productivity Applications – While the buzz
around AJAX may fade, the number of robust new AJAX-enabled
applications will increase. These applications will be built on
evolving AJAX frameworks like Dojo and Rico and commercially
backed platforms like OpenLazlo. Of course every new start-up
will be secretly hoping for Google to make a bid and join the
family that has been expanded this year by Writely and Jotspot.

3. Red Hat Will Become an Acquisition Target – Someone
will make a bid on the #1 Linux vendor. Maybe Oracle
who has done a number on the leading Linux vendor with
Unbreakable Linux will take advantage of Red Hat’s near
52-week low. Uncertainty and ambiguity in the enterprise
Linux market will send Red Hat looking for another partner
to avoid being swallowed by the DB maker. Maybe IBM will
become Red Hat’s white knight.

4. Open Source Everywhere – More and more companies will
open source legacy products and launch new ones under
open source licenses. Database vendor Ingres is going to set
the standard that other more conservative infrastructure
vendors will follow. Look for new open source initiatives
from major infrastructure vendors like BMC, VMware, and
even Microsoft.

5. Microsoft Vista Launch Will Boost Sales of Other OSes –
 Microsoft’s launch of Vista will start to prompt hardware refresh-

es which can be nothing but good for Apple. Apple already has
momentum, Intel hardware, dropping prices and all the tum-
blers are becoming aligned for it to creep above its measly 5%
market share. Linux desktop vendors will likely see a few defec-
tors from the Redmond camp, though big ships turn slowly.
Look for Ubuntu to be the Linux desktop distribution of choice.

6. Half of All New PCs Will Be Notebooks – PC buyers are buy-
ing more notebooks every quarter and sometime in 2007 the
number of shipping notebooks will match the number of
desktop PCs or come very close.

Predictions

IT Enabled Services • Web TV • Visual AJAX IDE
 Microsoft Atlas • Apache XAP

COACH WEI
Founder, Chairman, & CTO, NexaWeb

Here are my submissions:

1. IT Enabled Services is going to fly high in 2007. As a result,
 we will see:

a. A lot more venture capital investments into IT Enabled Services;
b. Of course, a lot of startup activities in IT Enabled Services (new

company creation, merger and acquisition);
c. There will be some significant moves made by “traditional, big

companies” into IT Enabled Services too. For example, some of
the possibilities are:

 i. Massive reality shows on the Web, instead of being on
 TV. Can you imagine “American Idol” on the Web? Speaking of
 this, I think highly of Yahoo’s initiative into this area,
 including its recent acquisition of Bix.
 ii. A major entertainment company (NBC, ABC, etc.) fully
 embracing Web TV.

2. AJAX grows up – which means the following are available and useable:
a. Visual AJAX IDE (solving the ease-of-development issue. Most

likely based on Eclipse ATF);
b. Declarative AJAX Framework (solving the ease-of-development

issue. Most likely based on Microsoft Atlas and Apache XAP);
c. Adoption of AJAX within less leading-edge enterprises.
d. AJAXWorld Conference overtakes JavaOne conference. JavaOne is

being renamed as JavaScriptOne Conference.

3. Growing adoption of Web 2.0 technologies within the enterprise
a. Enterprise Mashup Server emerges as a product category.
b. Less leading-edge companies start to adoption Web 2.0 technologies.

4. The IPO market shows signs of opening up
a. One or two Web 2.0 companies go public, the majority of the exits

are acquisitions.
b. An increase of IPO filings and going public.

WS-BPEL 2.0 • BPM & Web 2.0 • SOA • XSLT • JSON

JOHN EVDEMON
Architect, Microsoft, with the Architecture Strategy Team
focusing on BPM and SOA

E.F. Schumacher, a well-known British economist, once wrote: “I cannot
predict the wind but I can have my sail ready.” With that thought in mind
here are ten predictions and hopes to help get your sails ready for 2007:

1. The WS-BPEL 2.0 specification will finally be approved as an
OASIS standard. Adoption of WS-BPEL will initially be slow,
driven by customer demand. BPEL will evolve beyond a “check
box requirement” if people begin using it as a foundation for defin-
ing process profiles (conceptually similar to how people use WS-
Security today). An updated mapping from BPMN to WS-BPEL will
also be published.

 Consequences of Open-Sourcing Java
 by Tony Wasserman
 Professor of Software Engineering Practice at Carnegie Mellon West
 and Executive Director of the Center for Open Source Investigation (COSI)

 The open-sourcing of Java under the GPL 2 license will have a ripple

effect on various technical and business issues in 2007:

• First, people will closely study the Java source code and find one or

more serious bugs, at least one of which has been there since the

earliest days of Java.

• Second, a real-time systems vendor will fork the source code, as per-

mitted by the GPL, and create a variant that is "tuned" for real-time

applications. This step will be the focus of a major debate within the

Java community.

• Third, the open-sourcing of Java will have a positive impact on the

adoption and use of open source software in general.

• Fourth, the use of the GPL 2 for open-sourcing Java will inhibit the

completion and acceptance of the GPL 3 proposal.

Open Source Java • General Public License v2 • GPL v3

The Z Generation CIO & IT Professional
By Bob Zurek
Director of Advanced Technologies with IBM Information Integration Solutions

 The Z Generation is typically described as those who are born sometime during the early

2000s and continue to the 2017 time frame. So what will these Generation Z IT Professionals be

experienced with. Here’s my prediction for the Top Ten characteristics (and this is just the tip of

the iceberg):

1. Grew up in the world of SaaS and open source and wonders why you would ever license

 and install software. If you still needed to install software, then it should be available in the

 form of open source. Expects all internal projects to be developed using

 the open source model.

2. Grew up with a mobile technology and wonders how anyone could run a business without

 it. Insists everything be available on a highly portable digital device and everyone in the

 organization have a device. No exceptions.

3. Grew up knowing how to leverage the power of social networks for the benefit of the corpo-

 ration. This includes the ability to build out these networks and use them to help build new

 products and technologies. Generation Z CIOs will have a huge advantage as they have

 grown up as participants in many social networks. China will be a big source of these

 networks. Websites will be built by the Z Generation CIO to invite outsiders in to help build

 new and innovative products that have yet to be thought of by the enterprises internal

 employees.

4. Grew up using Instant Messaging and will insist that the enterprise use IM as a priority over

 email and that email will only be used if the communications can’t be done using the

 features of the future enterprise IM platform.

5. Will tap into offerings such as TopCoder.com to supplement project teams. There will be a

 world of competing Topcoder.com like sites where the best coders in the world will be found

 to solve very complex algorithms and other challenging software projects facing the IT

 department. China will be a major provider of these teams.

6. Grew up with a complete understanding of the value of virtualization and therefore, their

 datacenter will be virtualized and the IT operating fabric will be grid-based, tapping the

 power of external grids of CPU.

7. RFID Everywhere. The Z Generation will be the ones that take RFID to new heights.

 Everything that is taggable will be tagged and tracked.

8. CIO and Z Generation IT Professionals will leverage the power of Internet video by taking

 advantage of companies like BrightCove Networks which will bring knowledge workers

 engaging channels like “The Customer Service Channel”, “The Corporate Strategy Channel”,

 “The M&A Channel” and others. I can see companies like Harvard Business Review and

 others producing content for these channels. Imagine the “The DataCenter Channel.” The

 topics are endless and will be as easy to find as bringing up your favorite search engine.

 New content will be generated targeted for companies like “The IBM Channel” or the “GE

 Channel.” I would love to see “The Institute of The Future Channel”

9. Intelligent Wikis will be the primary source of knowledge in an enterprise and will eventu-

 ally do what data warehousing did for business intelligence. Furthermore, new internal

 employee-generated communities will spin up to voluntarily invent new projects

 during their off-hours to showcase their creativity that is typically not known by the

 employer.

10. CIOs will aggressively adopt Prediction Networks as part of the core business strategy

 to better help the enterprise gauge where everything from sales to new product

 development will be successful.

SaaS • Open Source • Mobile • Enterprise IM
Social Networks • China • Virtualization • RFID • Internet Video

Prediction Networks • Intelligent Wikis

55December 2006JDJ.SYS-CON.com

Mobile AJAX • “Mobile Web 2.0” • SMS • LBS
Flash Lite • On-Device Portals

LUCA PASSANI
Wireless Guru & Technology Evangelist, Openwave

 Here are my predictions for 2007:

1. AJAX will still be hyped, but we will still see no mobile AJAX-based
killer apps, only proofs of concept.

2. JAVA ME will not gain much more ground. Too fragmented.
Games and some other apps. No killer apps though.

3. What people call “Mobile Web 2.0” is not Web browsing. Saying that
mobile and Web will converge is trendy in some environments
these days. This is wrong and that’s hardly surprising: people buy
phones to make calls, not to browse the Web, so why should we
expect phones to get so much better at browsing the Web?

4. SMS will still represent 80% or more of data traffic. The rest will
be downloads: ringtones, wallpapers and games. WAP will be
mostly used as a discovery mechanism to get to those contents.
Reformatting proxies to adapt Web content for mobile will be
implemented by most operators. They will increase browsing a
bit, but nothing earth-shattering.

5. Not sure about Location-Based Services. LBS have been on the
verge of explosion for some time now.

6. Flash Lite will make significant progress in Europe and North
America, also on operator portals.

7. On-Device Portals are an interesting development: content gets
pushed to devices while the user isn’t watching and they may
decide later to buy it or not. This will be trendy next here. It will be
interesting to see which actual implementations of the concept
deliver.

8. More people will realize that device fragmentation is one of the
main hurdles for mobile.

Flash Memory • AJAX Productivity • Red Hat • Vista
Notebooks • Ubuntu

MARK HINKLE
Editor-in-Chief, Enterprise Open Source Magazine

Here are my predictions:

1. Flash-bootable PCs – It’s been a long-time coming but laptop
PCs will start booting from flash memory. This will make a huge
difference in battery life. Intel will lead the way pushing their
NAND flash boot memory on a new laptop platform and Apple
will be among the first to adopt. The One Laptop per Child
initiative will also provide a demonstration of the first zero disk
drive PCs albeit small. Devices like this will inspire creativity
on higher end models especially as the price of non-volatile
memory continues to drop.

2. New Crop of AJAX Productivity Applications – While the buzz
around AJAX may fade, the number of robust new AJAX-enabled
applications will increase. These applications will be built on
evolving AJAX frameworks like Dojo and Rico and commercially
backed platforms like OpenLazlo. Of course every new start-up
will be secretly hoping for Google to make a bid and join the
family that has been expanded this year by Writely and Jotspot.

3. Red Hat Will Become an Acquisition Target – Someone
will make a bid on the #1 Linux vendor. Maybe Oracle
who has done a number on the leading Linux vendor with
Unbreakable Linux will take advantage of Red Hat’s near
52-week low. Uncertainty and ambiguity in the enterprise
Linux market will send Red Hat looking for another partner
to avoid being swallowed by the DB maker. Maybe IBM will
become Red Hat’s white knight.

4. Open Source Everywhere – More and more companies will
open source legacy products and launch new ones under
open source licenses. Database vendor Ingres is going to set
the standard that other more conservative infrastructure
vendors will follow. Look for new open source initiatives
from major infrastructure vendors like BMC, VMware, and
even Microsoft.

5. Microsoft Vista Launch Will Boost Sales of Other OSes –
 Microsoft’s launch of Vista will start to prompt hardware refresh-

es which can be nothing but good for Apple. Apple already has
momentum, Intel hardware, dropping prices and all the tum-
blers are becoming aligned for it to creep above its measly 5%
market share. Linux desktop vendors will likely see a few defec-
tors from the Redmond camp, though big ships turn slowly.
Look for Ubuntu to be the Linux desktop distribution of choice.

6. Half of All New PCs Will Be Notebooks – PC buyers are buy-
ing more notebooks every quarter and sometime in 2007 the
number of shipping notebooks will match the number of
desktop PCs or come very close.

Predictions

IT Enabled Services • Web TV • Visual AJAX IDE
 Microsoft Atlas • Apache XAP

COACH WEI
Founder, Chairman, & CTO, NexaWeb

Here are my submissions:

1. IT Enabled Services is going to fly high in 2007. As a result,
 we will see:

a. A lot more venture capital investments into IT Enabled Services;
b. Of course, a lot of startup activities in IT Enabled Services (new

company creation, merger and acquisition);
c. There will be some significant moves made by “traditional, big

companies” into IT Enabled Services too. For example, some of
the possibilities are:

 i. Massive reality shows on the Web, instead of being on
 TV. Can you imagine “American Idol” on the Web? Speaking of
 this, I think highly of Yahoo’s initiative into this area,
 including its recent acquisition of Bix.
 ii. A major entertainment company (NBC, ABC, etc.) fully
 embracing Web TV.

2. AJAX grows up – which means the following are available and useable:
a. Visual AJAX IDE (solving the ease-of-development issue. Most

likely based on Eclipse ATF);
b. Declarative AJAX Framework (solving the ease-of-development

issue. Most likely based on Microsoft Atlas and Apache XAP);
c. Adoption of AJAX within less leading-edge enterprises.
d. AJAXWorld Conference overtakes JavaOne conference. JavaOne is

being renamed as JavaScriptOne Conference.

3. Growing adoption of Web 2.0 technologies within the enterprise
a. Enterprise Mashup Server emerges as a product category.
b. Less leading-edge companies start to adoption Web 2.0 technologies.

4. The IPO market shows signs of opening up
a. One or two Web 2.0 companies go public, the majority of the exits

are acquisitions.
b. An increase of IPO filings and going public.

WS-BPEL 2.0 • BPM & Web 2.0 • SOA • XSLT • JSON

JOHN EVDEMON
Architect, Microsoft, with the Architecture Strategy Team
focusing on BPM and SOA

E.F. Schumacher, a well-known British economist, once wrote: “I cannot
predict the wind but I can have my sail ready.” With that thought in mind
here are ten predictions and hopes to help get your sails ready for 2007:

1. The WS-BPEL 2.0 specification will finally be approved as an
OASIS standard. Adoption of WS-BPEL will initially be slow,
driven by customer demand. BPEL will evolve beyond a “check
box requirement” if people begin using it as a foundation for defin-
ing process profiles (conceptually similar to how people use WS-
Security today). An updated mapping from BPMN to WS-BPEL will
also be published.

 Consequences of Open-Sourcing Java
 by Tony Wasserman
 Professor of Software Engineering Practice at Carnegie Mellon West
 and Executive Director of the Center for Open Source Investigation (COSI)

 The open-sourcing of Java under the GPL 2 license will have a ripple

effect on various technical and business issues in 2007:

• First, people will closely study the Java source code and find one or

more serious bugs, at least one of which has been there since the

earliest days of Java.

• Second, a real-time systems vendor will fork the source code, as per-

mitted by the GPL, and create a variant that is "tuned" for real-time

applications. This step will be the focus of a major debate within the

Java community.

• Third, the open-sourcing of Java will have a positive impact on the

adoption and use of open source software in general.

• Fourth, the use of the GPL 2 for open-sourcing Java will inhibit the

completion and acceptance of the GPL 3 proposal.

Open Source Java • General Public License v2 • GPL v3

The Z Generation CIO & IT Professional
By Bob Zurek
Director of Advanced Technologies with IBM Information Integration Solutions

 The Z Generation is typically described as those who are born sometime during the early

2000s and continue to the 2017 time frame. So what will these Generation Z IT Professionals be

experienced with. Here’s my prediction for the Top Ten characteristics (and this is just the tip of

the iceberg):

1. Grew up in the world of SaaS and open source and wonders why you would ever license

 and install software. If you still needed to install software, then it should be available in the

 form of open source. Expects all internal projects to be developed using

 the open source model.

2. Grew up with a mobile technology and wonders how anyone could run a business without

 it. Insists everything be available on a highly portable digital device and everyone in the

 organization have a device. No exceptions.

3. Grew up knowing how to leverage the power of social networks for the benefit of the corpo-

 ration. This includes the ability to build out these networks and use them to help build new

 products and technologies. Generation Z CIOs will have a huge advantage as they have

 grown up as participants in many social networks. China will be a big source of these

 networks. Websites will be built by the Z Generation CIO to invite outsiders in to help build

 new and innovative products that have yet to be thought of by the enterprises internal

 employees.

4. Grew up using Instant Messaging and will insist that the enterprise use IM as a priority over

 email and that email will only be used if the communications can’t be done using the

 features of the future enterprise IM platform.

5. Will tap into offerings such as TopCoder.com to supplement project teams. There will be a

 world of competing Topcoder.com like sites where the best coders in the world will be found

 to solve very complex algorithms and other challenging software projects facing the IT

 department. China will be a major provider of these teams.

6. Grew up with a complete understanding of the value of virtualization and therefore, their

 datacenter will be virtualized and the IT operating fabric will be grid-based, tapping the

 power of external grids of CPU.

7. RFID Everywhere. The Z Generation will be the ones that take RFID to new heights.

 Everything that is taggable will be tagged and tracked.

8. CIO and Z Generation IT Professionals will leverage the power of Internet video by taking

 advantage of companies like BrightCove Networks which will bring knowledge workers

 engaging channels like “The Customer Service Channel”, “The Corporate Strategy Channel”,

 “The M&A Channel” and others. I can see companies like Harvard Business Review and

 others producing content for these channels. Imagine the “The DataCenter Channel.” The

 topics are endless and will be as easy to find as bringing up your favorite search engine.

 New content will be generated targeted for companies like “The IBM Channel” or the “GE

 Channel.” I would love to see “The Institute of The Future Channel”

9. Intelligent Wikis will be the primary source of knowledge in an enterprise and will eventu-

 ally do what data warehousing did for business intelligence. Furthermore, new internal

 employee-generated communities will spin up to voluntarily invent new projects

 during their off-hours to showcase their creativity that is typically not known by the

 employer.

10. CIOs will aggressively adopt Prediction Networks as part of the core business strategy

 to better help the enterprise gauge where everything from sales to new product

 development will be successful.

SaaS • Open Source • Mobile • Enterprise IM
Social Networks • China • Virtualization • RFID • Internet Video

Prediction Networks • Intelligent Wikis

JDJ.SYS-CON.com56 December 2006

2. The convergence of BPM and Web 2.0 begins. BPM
is about improving performance by optimizing key
processes. Web 2.0 is about capturing the wisdom of
crowds (or as O’Reilly puts it, the architecture of partici-
pation). The convergence of BPM and Web 2.0 enables
collaborative development and tagging of sub-process-
es, establishing a “process folksonomy” where the best
processes can evolve organically. Collaboration can
occur over simple but highly scalable pub/sub mecha-
nisms (like Atom or SSE). Lightweight tools will enable
users to model or reuse sub-processes using a broad set
of metadata. While this is an exciting opportunity, there
are several technical and non-technical issues that
must be addressed before this convergence becomes a
reality.

3. Improvements in SOA management and governance.
Tools, frameworks and platforms will emerge that better
enable:
• Defining and enforcing service development
 guidelines
• Modeling, managing and enforcing operational

policies (e.g., security, service level agreements and
others)

• Service simulations (what-if scenarios, impact anal-
ysis, etc.)

• Modeling and managing service dependencies
• Service provisioning and de-provisioning
• Configuration management

4. Workflow isn’t confined to the datacenter anymore.
Lightweight, extensible frameworks like Windows
Workflow Foundation (WF) enable workflow in
places where it may not have been previously
considered.

5. Better UI Experiences. Declarative user interfaces will
enable rich user experiences that can be easily modi-
fied or extended with simple mechanisms like XSLT.
Familiar business applications like Office provide
the user interface to back-end line-of-business sys-
tems. The line between AJAX-based UIs and rich
desktop UIs will blur, enabling users to enjoy both
connected and occasionally-connected experiences.
Tools and guidance will make building, testing and
deploying these composite UI experiences much
easier.

 6. A new category of architecture emerges: Software +
Services. It is hard these days to find an architectural
concept that is not some how tied to services. The line
between Web services, SaaS and traditional applica-
tions will blur to the point where the location, contract
and hosting of a service are less important than the
capabilities exposed by the service.

7. JSON without AJAX. We’ll start to see more people using
JSON to address the XML bloat problem outside of sim-
ple AJAX-based applications. The downside is that this
may result in more tightly-coupled applications.

 8. Events and states instead of EDI-style messaging.
 Lightweight frameworks will empower developers
 to starting thinking about solutions in terms of event
 notifications instead of simple messages passing from
 point A to point B. Hierarchical state machines enable

 state synchronization across complex, federated
 processes.

9. We stop talking about SOA and “just do it.” Sometimes

 we spend more time arguing about IT trends than
 actually using them. In 2007 the tools and specifica-

 tions we need for enterprise-strength, loosely-coupled
 solutions have finally arrived – it’s time to roll up our
 sleeves and get to work.

 10. IT finally admits that there is no silver bullet. Every
 year I hope to see this happen and every year my hopes

 are crushed by buzzword-of-the-minute hype
 machines. (Hey I can dream, can’t I?)

AJAX Over-use • JSF • Relational Object Mapping • Macs

BILL DUDNEY
Editor-in-Chief, Eclipse Developer’s Journal

1. AJAX will continue to gain momentum as folks continue
to have the epiphany that Web 1.0 UI is not good for
users. Overuse of the technology will be a real problem.
JSF will finally start to become a de facto as well

 as actual standard due to its ease of integration with
AJAX.

2. Open Source enablement will continue to be a hot spot
for VC investment. I don’t think the perfect business
model will emerge in ‘07 though so the market will still
remain ‘immature.’

3. Java Persistence API will bring relational object mapping to
the long tail of the market. Early adopters will be wondering
what all the hype is because the technology is so old in their
eyes.

4. Macs will continue their ‘thought leader’ adoption curve.
This is not the year they start to penetrate the corporate IT
department.

Web Service Orchestration • Web Services Explosion

ADAM KOLAWA
Co-Founder & CEO, Parasoft

1. I anticipate a significant demand for Web service
orchestration in the upcoming year, especially in the
United States.

Many organizations now have at least one Web ser-
vice, and a growing number already have two or more
related Web services. Managing multiple related Web
services is considerably more challenging than manag-

Predictions

ing the same number of separate, unrelated Web services.
To use these related Web services to achieve your business
goals, you need to consider how high-level operations pass
through the Web services, then determine how to imple-
ment this high-level flow— from start to finish. This can be
accomplished in two ways:
– By programmatically coding the application logic

required to tie the involved elements together.
– By using an orchestration tool to direct the flow through

the involved elements, which remain separate.

 I predict that the latter method will be the favorite
because it is easier.

2. I also expect an explosion of Web services because they
are so easy to expose. Once exposed, Web services basi-
cally create interfaces which can be reused. This will sig-
nificantly reduce the amount of code that needs to writ-
ten, which will in turn cut the demand for “bare bones”
development.

Server Virtualization • Container-Based Hosting • Linux
Rails • Django • Agile Development

BRANDON HARPER
Senior Software Developer at Acxiom Corp.

 The top five technology trends I see happening in the New
Year are:

1. Server virtualization is just getting started, and will really
make itself known in the coming year. Once we start see-
ing the quad core CPU architectures as a part of standard
infrastructure, it really starts making a lot of sense to start
deploying and managing servers and applications as vir-
tual entities rather than specific pieces of hardware. This
helps manage the cost and pain of software configuration
management, take advantage of being able to process
many tasks simultaneously because of hardware support,
as well as allows legacy hardware to be retired in favor of
applications running on virtual servers.

2. Container-based hosting is the new kid on the block, and
will also start making its presence known in the upcom-
ing year. Commonly labeled as “grid” hosting (which is a
technical misnomer if you understand distributed com-
puting), it essentially claims to be an infinitely scalable
hosting platform. This technology still seems to be half-
baked at the moment, but you could have said the same
thing about Linux ten years ago.

3. People who normally wouldn’t use Linux start to ex-
plore it and even replace Windows with it permanently.
With Vista, Microsoft seems to be moving to a model
in which the Windows operating system is a method to
police users with DRM and other nonsense rather than
provide developers with a good platform on which to use
hardware, which is what operating systems are really sup-
posed to be. A lot more consumers who haven’t noticed
this happening in the past will stand up and notice this

year.
4. Dynamic languages and frameworks will continue to

make leaps in popularity and adoption. Given the cur-
rent squeeze on technology talent in the US, companies
are going to have to learn how to do more with fewer
resources. Moving to dynamic languages and frameworks
as well as other simplification such as varying Agile soft-
ware development practices will enable this to take place.
I think the obvious leading candidates here are Ruby on
Rails and Django.

5. The enterprise will embrace ways to simplify develop-
ment by continuing to embrace open source software
and Agile Development strategies. While there are a lot
of cries to the effect of Ruby on Rails replacing Java, I
think that’s complete nonsense as Java is a language
and Ruby on Rails is a framework. Rapid development
languages will certainly make some inroads, particularly
where heavy tools have been used to build simple
applications, Java is still going to be a major part of
the service-oriented enterprise for years to come
because of the power and tools it provides as well
as its industry support.

…And in Other 2007 News
by Richard Monson-Haefel
Award-Winning Author & Senior Analyst, Burton Group

1. Jonathan Schwartz open-sources Sun Microsystems.

 In a move that will surprise everyone Sun Microsystems will

announce that it will open source its entire company.

Sales, marketing, finance, and even operations will be open to the

community for anyone to contribute.

2. Apple computer announces the iPod Uno.

The size of a match stick with no screen or controls, the iPod Uno

plays one song in a constant loop. Despite its limited capabilities,

 the tiny device becomes an instant hit and a cultural icon.

3. In what is heralded as the seminal article on the subject,

 Tim Berners-Lee mentions “IT2”

 Overnight the term morphs into “IT 2.0,” spawning thousands of blog

entries and press articles, a dozen books, five conferences, and millions

of dollars in venture capital. It turns out that the original article, incom-

prehensible to most readers, was actually another attempt to explain

the Semantic Web and the IT2 reference was just a typo.

4. Microsoft will create the first CMO (Chief Marketing Officer) position.
The new CMO will immediately change his own title to Chief
Command & Control of Packaging Officer (C3PO) and then announce
that Vista will be delayed and renamed Microsoft Virtualization
Application Program Operating system Reloaded (Microsoft VAPOR).

Open Sun • iPod Uno • IT2 • Microsoft VAPOR

57December 2006JDJ.SYS-CON.com

2. The convergence of BPM and Web 2.0 begins. BPM
is about improving performance by optimizing key
processes. Web 2.0 is about capturing the wisdom of
crowds (or as O’Reilly puts it, the architecture of partici-
pation). The convergence of BPM and Web 2.0 enables
collaborative development and tagging of sub-process-
es, establishing a “process folksonomy” where the best
processes can evolve organically. Collaboration can
occur over simple but highly scalable pub/sub mecha-
nisms (like Atom or SSE). Lightweight tools will enable
users to model or reuse sub-processes using a broad set
of metadata. While this is an exciting opportunity, there
are several technical and non-technical issues that
must be addressed before this convergence becomes a
reality.

3. Improvements in SOA management and governance.
Tools, frameworks and platforms will emerge that better
enable:
• Defining and enforcing service development
 guidelines
• Modeling, managing and enforcing operational

policies (e.g., security, service level agreements and
others)

• Service simulations (what-if scenarios, impact anal-
ysis, etc.)

• Modeling and managing service dependencies
• Service provisioning and de-provisioning
• Configuration management

4. Workflow isn’t confined to the datacenter anymore.
Lightweight, extensible frameworks like Windows
Workflow Foundation (WF) enable workflow in
places where it may not have been previously
considered.

5. Better UI Experiences. Declarative user interfaces will
enable rich user experiences that can be easily modi-
fied or extended with simple mechanisms like XSLT.
Familiar business applications like Office provide
the user interface to back-end line-of-business sys-
tems. The line between AJAX-based UIs and rich
desktop UIs will blur, enabling users to enjoy both
connected and occasionally-connected experiences.
Tools and guidance will make building, testing and
deploying these composite UI experiences much
easier.

 6. A new category of architecture emerges: Software +
Services. It is hard these days to find an architectural
concept that is not some how tied to services. The line
between Web services, SaaS and traditional applica-
tions will blur to the point where the location, contract
and hosting of a service are less important than the
capabilities exposed by the service.

7. JSON without AJAX. We’ll start to see more people using
JSON to address the XML bloat problem outside of sim-
ple AJAX-based applications. The downside is that this
may result in more tightly-coupled applications.

 8. Events and states instead of EDI-style messaging.
 Lightweight frameworks will empower developers
 to starting thinking about solutions in terms of event
 notifications instead of simple messages passing from
 point A to point B. Hierarchical state machines enable

 state synchronization across complex, federated
 processes.

9. We stop talking about SOA and “just do it.” Sometimes

 we spend more time arguing about IT trends than
 actually using them. In 2007 the tools and specifica-

 tions we need for enterprise-strength, loosely-coupled
 solutions have finally arrived – it’s time to roll up our
 sleeves and get to work.

 10. IT finally admits that there is no silver bullet. Every
 year I hope to see this happen and every year my hopes

 are crushed by buzzword-of-the-minute hype
 machines. (Hey I can dream, can’t I?)

AJAX Over-use • JSF • Relational Object Mapping • Macs

BILL DUDNEY
Editor-in-Chief, Eclipse Developer’s Journal

1. AJAX will continue to gain momentum as folks continue
to have the epiphany that Web 1.0 UI is not good for
users. Overuse of the technology will be a real problem.
JSF will finally start to become a de facto as well

 as actual standard due to its ease of integration with
AJAX.

2. Open Source enablement will continue to be a hot spot
for VC investment. I don’t think the perfect business
model will emerge in ‘07 though so the market will still
remain ‘immature.’

3. Java Persistence API will bring relational object mapping to
the long tail of the market. Early adopters will be wondering
what all the hype is because the technology is so old in their
eyes.

4. Macs will continue their ‘thought leader’ adoption curve.
This is not the year they start to penetrate the corporate IT
department.

Web Service Orchestration • Web Services Explosion

ADAM KOLAWA
Co-Founder & CEO, Parasoft

1. I anticipate a significant demand for Web service
orchestration in the upcoming year, especially in the
United States.

Many organizations now have at least one Web ser-
vice, and a growing number already have two or more
related Web services. Managing multiple related Web
services is considerably more challenging than manag-

Predictions

ing the same number of separate, unrelated Web services.
To use these related Web services to achieve your business
goals, you need to consider how high-level operations pass
through the Web services, then determine how to imple-
ment this high-level flow— from start to finish. This can be
accomplished in two ways:
– By programmatically coding the application logic

required to tie the involved elements together.
– By using an orchestration tool to direct the flow through

the involved elements, which remain separate.

 I predict that the latter method will be the favorite
because it is easier.

2. I also expect an explosion of Web services because they
are so easy to expose. Once exposed, Web services basi-
cally create interfaces which can be reused. This will sig-
nificantly reduce the amount of code that needs to writ-
ten, which will in turn cut the demand for “bare bones”
development.

Server Virtualization • Container-Based Hosting • Linux
Rails • Django • Agile Development

BRANDON HARPER
Senior Software Developer at Acxiom Corp.

 The top five technology trends I see happening in the New
Year are:

1. Server virtualization is just getting started, and will really
make itself known in the coming year. Once we start see-
ing the quad core CPU architectures as a part of standard
infrastructure, it really starts making a lot of sense to start
deploying and managing servers and applications as vir-
tual entities rather than specific pieces of hardware. This
helps manage the cost and pain of software configuration
management, take advantage of being able to process
many tasks simultaneously because of hardware support,
as well as allows legacy hardware to be retired in favor of
applications running on virtual servers.

2. Container-based hosting is the new kid on the block, and
will also start making its presence known in the upcom-
ing year. Commonly labeled as “grid” hosting (which is a
technical misnomer if you understand distributed com-
puting), it essentially claims to be an infinitely scalable
hosting platform. This technology still seems to be half-
baked at the moment, but you could have said the same
thing about Linux ten years ago.

3. People who normally wouldn’t use Linux start to ex-
plore it and even replace Windows with it permanently.
With Vista, Microsoft seems to be moving to a model
in which the Windows operating system is a method to
police users with DRM and other nonsense rather than
provide developers with a good platform on which to use
hardware, which is what operating systems are really sup-
posed to be. A lot more consumers who haven’t noticed
this happening in the past will stand up and notice this

year.
4. Dynamic languages and frameworks will continue to

make leaps in popularity and adoption. Given the cur-
rent squeeze on technology talent in the US, companies
are going to have to learn how to do more with fewer
resources. Moving to dynamic languages and frameworks
as well as other simplification such as varying Agile soft-
ware development practices will enable this to take place.
I think the obvious leading candidates here are Ruby on
Rails and Django.

5. The enterprise will embrace ways to simplify develop-
ment by continuing to embrace open source software
and Agile Development strategies. While there are a lot
of cries to the effect of Ruby on Rails replacing Java, I
think that’s complete nonsense as Java is a language
and Ruby on Rails is a framework. Rapid development
languages will certainly make some inroads, particularly
where heavy tools have been used to build simple
applications, Java is still going to be a major part of
the service-oriented enterprise for years to come
because of the power and tools it provides as well
as its industry support.

…And in Other 2007 News
by Richard Monson-Haefel
Award-Winning Author & Senior Analyst, Burton Group

1. Jonathan Schwartz open-sources Sun Microsystems.

 In a move that will surprise everyone Sun Microsystems will

announce that it will open source its entire company.

Sales, marketing, finance, and even operations will be open to the

community for anyone to contribute.

2. Apple computer announces the iPod Uno.

The size of a match stick with no screen or controls, the iPod Uno

plays one song in a constant loop. Despite its limited capabilities,

 the tiny device becomes an instant hit and a cultural icon.

3. In what is heralded as the seminal article on the subject,

 Tim Berners-Lee mentions “IT2”

 Overnight the term morphs into “IT 2.0,” spawning thousands of blog

entries and press articles, a dozen books, five conferences, and millions

of dollars in venture capital. It turns out that the original article, incom-

prehensible to most readers, was actually another attempt to explain

the Semantic Web and the IT2 reference was just a typo.

4. Microsoft will create the first CMO (Chief Marketing Officer) position.
The new CMO will immediately change his own title to Chief
Command & Control of Packaging Officer (C3PO) and then announce
that Vista will be delayed and renamed Microsoft Virtualization
Application Program Operating system Reloaded (Microsoft VAPOR).

Open Sun • iPod Uno • IT2 • Microsoft VAPOR

JDJ.SYS-CON.com58 December 2006

Labs

s the saying goes you never
get a second chance at a
first impression. In general,
that’s true, but if you’ve been

thoroughly revitalized, matured, and
cosmetically re-engineered, shouldn’t
you get a second shot at that first
impression? I’d argue that’s true of
Oracle’s Java/J2EE Workbench, Oracle
JDeveloper.
 Starting out life as a code fork from
Borland’s JBuilder tool back in 1997,
Oracle JDeveloper has had a fairly
long history as a Java IDE, most of
it in relative obscurity. Things have
changed though. During JavaOne
2005, Oracle announced that Oracle
JDeveloper would henceforth be free.
This sparked interest, since JDevelop-
er always had areas of definite benefits
over other tools but came with a price
tag. Furthermore, over the last couple
of years, Oracle has added rich sup-
port for all areas of Java and JEE devel-
opment, especially in the case of the
latest 10.1.3.1 rev released in October
2006 during Oracle OpenWorld.
 This latest release supports JEE 5
standards such as EJB 3.0 and JSR-
220 Java Persistence API, JSR-181
Web Service Annotations, as well as
JavaServer Faces. It also brings a visual
design time environment for creating
Business Process Execution Language
(BPEL) processes and Enterprise Ser-
vice Bus (ESB) Services and features-
enriched functionality for Java, XML,
Web Services and Web application
development. I’d like to invite you to
take a brief tour to get that second
look and a new first impression of
Oracle JDeveloper.

Getting To Know Oracle JDeveloper
 JDeveloper 10.1.3.1 can be down-
loaded from Oracle’s Technology
Network at http://oracle.com/tech-
nology//jdev (up to 420 MB). Installa-

tion only takes unzipping an archive.
When running, JDeveloper’s Studio
Edition consumes a somewhat greedy
180 MB memory by just being there.

Plain Old Java Programming
 Java IDEs are typically evaluated
first and foremost on their ability to
support pure Java programming. Or-
acle JDeveloper has a history riddled
with wizards and frameworks and
facilities for all kinds of development,
but it tended to trail behind other
prominent IDEs when it came to Plain
Old Java Programming (POJP). With
recent releases that gap has been
closed and Oracle JDeveloper cur-
rently offers at least the same, if not
more features, than can be found in
alternative tools.
 Built-in features include:
• Refactoring – with options such as

extract code fragment as method and
extract interface or superclass

• Code folding
• Quick view of JavaDoc of referenced

classes and methods
• Code completion and code

reformatting
• User-customizable code snippets
• Generation of bean accessors for

properties
• Smart import organization of classes

and libraries

 One feature I particularly like and
frequently use is the CTRL+ – a key
combination for “Go to Java Class.”
This brings up a window where devel-
opers can type in the name of a
class or interface and navigate di-
rectly either to the source code or the
JavaDoc.
 Advanced tools found in Oracle
JDeveloper, not generally part of the
core of IDEs, include a code profiler
to identify performance and memory
hotspots, and an auditor that does
quality control on Java source code
– even on non-compilable code
– according to predefined standards
and guidelines. The profiler monitors
and logs a running program’s use of
processor and memory resources and
can be used to locate and correct in-
efficiencies. Developers can also use
the profiler with the debugger and
CodeCoach for efficient source code
troubleshooting.
 The march of Plain Old Java Objects
(POJOs) seems unstoppable. With EJB
3.0, and particularly the Java Persis-
tence API (JSR-220), as well as the
Web Service annotations defined in
JSR-181, a POJO can be easily promot-
ed to an entity, persistently mapped
to a database table or a Web Service
simply by adding some annotations
to the bean definition. JDeveloper
will recognize these annotations and
provide code completion support for
them.
 JDeveloper 10.1.3.1 also features
wizards that can create entities (an-
notated POJOs) from selected tables
and views in a database, or that
can create a new entity. Currently
there’s no synchronizing support to
realign entities and tables; however,
given Oracle’s leading role in the Dali
Eclipse plug-in, I expect this feature
to be added to a future version of
Oracle JDeveloper.

Reviewed by
Lucas Jellema

Oracle JDeveloper –
An I2DE Worth a Second Look

Lucas Jellema (Oracle ACE)

is CTO at AMIS, an Oracle,

Java and SOA Technology

Consulting firm based in

Nieuwegein, The Nether-

lands. Apart from being

a technical architect and

workshop instructor, he is

a regular presenter at in-

ternational conferences on

topics such as BPEL, EJB 3.0,

AJAX and Java Server Faces,

Oracle’s ADF (Application

Development Framework)

and productive application

development in general.

Lucas.Jellema@AMIS.nl

It’s never too late for a second chance at a first impression

A

59December 2006JDJ.SYS-CON.com

 The Web Service wizard allows
easy publication of a POJO and se-
lected methods as a Web Service; this
wizard can add the JSR-181 annota-
tions to the POJO, or create a WSDL
document along with the WSIF bind-
ing definition.

Integration IDE
 The biggest news with Oracle
JDeveloper 10.1.3.1 is the Integrated
Service Environment workbench. In
particular, BPEL and ESB tooling is
now fully integrated into JDeveloper.
 There is a visual diagrammer with
drag-and-drop component palettes
and built-in wizards that help the
developer design the BPEL processes.
Wizards help create partner links for
adapter services that link to external
systems like (SOAP) Web Services,
JMS, file system and FTP servers, MQ
Series and databases (SQL or Oracle
PL/SQL). The BPEL process is created
by dragging BPEL activities such as
pick, flow, invoke, reply, and assign
to the diagram and configuring them
through wizard screens. The invoke
and reply steps are connected to the
partner links with external services.
A BPEL process can be deployed
directly to the Oracle BPEL Process
Manager from within the JDeveloper
IDE (see Figure 1).
 Oracle JDeveloper can also generate
test cases for BPEL processes in which
partner link response messages and
workflow outcomes can be emulated
prior to deployment in a production
environment. This helps ensure that
a process interacts with Web Service
partners as expected by the time it’s
ready for deployment to a production
environment.
 In late October 2006, Oracle re-
leased its ESB as part of its SOA Suite.
Oracle JDeveloper provides the design
time for the ESB, and ESB router
services typically consist of inbound
services, routing and transformation
rules and outbound services. The
router service is constructed visually,
using drag and drop, as well the same
adapter service wizards used for de-
veloping BPEL processes. The trans-
formation of messages in the ESB is
done using an XSLT transformation.
Oracle JDeveloper has a particularly
useful tool that makes creating the

XSLT document a simple, highly
visual task, using drag and drop from
source (inbound) XSD to the target
XSD document.
 Deploying the ESB is a two-click
process using a predefined connection
to the application server that hosts the
ESB.
 The first impression in developing
ESB services is that it works very well
– even though this is just a 1.0 release
of the technology.

I2DE – Integrated IDE
 Some integrated development en-
vironments (IDE) are more integrated
than others. Oracle JDeveloper is much
more than a Java programming tool. In-
tegrated into its core Java IDE are a host
of other IDEs such as:
• XML development – visual editors for

XSD, XSLT, XQuery, WSDL, and support
for debugging XSLT

• Web development – visual editors for
CSS, as well as WYSIWYG editors for
HTML, JSP, JSF (pages and config)
and ADF Faces (a k a Apache MyFaces
Trinidad), Struts (config) and Applets
and an HTTP Analyzer for analysis of
the packets sent across the wire for
Web Services and Web applications

• J2EE development – wizards for EJB,
Web Services, and the built-in OC4J

Application Server to deploy J2EE
artifacts quickly, as well as very easy
remote debugging of both Web and
J2EE applications. JDeveloper also pro-
vides an IDE for Oracle TopLink – one
of the premium tools for object-rela-
tional mapping

• Database development – editors and
diagrammers for tables, database
browsers, SQL worksheets, data viewer
for all JDBC-powered databases as well
as programming and debugging sup-
port for PL/SQL – the Oracle database’s
stored procedural language

• UML modeling – diagrammers for
activity, class (with code synchroniza-
tion), sequence and use case diagrams

• Integration – visual modeling, testing.
and deploying Web Services, BPEL pro-
cesses, and ESB services

 These various IDEs work together
and are blended in the overall IDE.
Together they share connections
(database, application server, UDDI,
WebDAV), a project definition with
path-setup, library associations, and
deployment profiles. Generic tools
include a property palette, a structure
window, debugger, and a task manager.
JDeveloper integrates with various ap-
plication servers – WebLogic, Tomcat,
JBoss, OC4J, and Oracle Application

 Figure 1 BPEL Designer

JDJ.SYS-CON.com60 December 2006

Server for one-click deployment, and
also provides powerful Ant integration
(see Figure 2).

Check for Updates/Extensions
 No matter how rich an IDE may be
it’s never complete out-of-the-box.
Like other IDEs, Oracle JDeveloper
has an automated mechanism for
installing extensions – the JDeveloper
term for what other IDEs call plug-
ins – that’s also used in updating the
IDE itself with patches and service
updates.
 However, there’s obviously only a
limited set of extensions available for
Oracle JDeveloper, since most of the
functionality is already built-in and
pre-integrated. While that may mean
a little less choice, it most certainly
saves a lot of time and money other-
wise spent on acquiring the collec-
tion of plug-ins offering the same
functionality only to find them far
less well integrated than one would
hope for.

 Some useful extensions – that you
might have expected to come pre-
integrated – include unit testing with
JUnit and support for AspectJ and
Subversion.
 Installing and upgrading exten-
sions is effortless; however, down-
grading or de-installing extensions
requires developers to disable the
extension and remove the archive
from the file system.

Oracle Frameworks for
Productive Java Development
 Oracle JDeveloper is frequently
known for its built-in frameworks,
such as ADF Business Components
– a SQL-oriented framework for
mapping between Java applications
and relational databases – and ADF
Model – a data-binding infrastruc-
ture based on JSR-227. While these
frameworks can add tremendous
productivity, such as the drag-and-
drop development of a database-
bound JSF application, they are

often regarded with some suspicion,
because people see them as too pro-
prietary and closed.
 Every organization needs to make
its own judgment about using these
frameworks. They should take into
account that these frameworks lower
the barrier considerably for doing
(productive) J2EE development, al-
lowing less-experienced developers
to make substantial contributions to
development efforts. Furthermore,
Oracle is using these frameworks to
develop Fusion Applications, virtually
guaranteeing their continued sup-
port and enhancement. Applications
developed with these frameworks are
J2EE-compliant and can be installed
on various application servers.

Conclusion
 The new 10.1.3.1 release of Oracle
JDeveloper has a lot to offer with
functionality that extends far beyond
what one would normally expect from
a Java IDE. One of its key strengths is
its out-of-the-box richness, compre-
hensive feature set, and tight integra-
tion. No need for searching, acquir-
ing, and installing a lot of plug-ins.
 In the past there’s been a lot of
prejudice concerning Oracle JDevel-
oper: not being suitable for Plain Old
Java development, only supporting
proprietary Oracle development,
being too expensive, etc. However,
Oracle JDeveloper 10.1.3.1 is free,
allows – but by no means necessitates
– using Oracle-specific frameworks,
and has scores and scores of features
that even the most hardcore Java
programmer will appreciate. Support
for SOA, XML, Web, database, UML,
and J2EE is an added bonus.
 If you haven’t looked at Oracle
JDeveloper in a while, you’ll definite-
ly want to take a second look now.
Installation only takes unzipping
an archive. Oracle JDeveloper
10.1.3.1 is free and available for
download at: http://oracle.com/
technology//jdev.

Labs

 Figure 2 ADF Faces Visual Editor + Structure Window, Property Palette, Component Palette

Oracle JDeveloper has functionality that extends far beyond
what one would normally expect from a Java IDE and needs to

escape the prison of its past”
“

���������������������������

����������������������������������

��������������������������������

���������������������������

����������������������������������

�������������

������������������������������
�����������������

���� ����

��

������
����

��������
���������

���������������������������
�������������������������

��������������������
�������������

�����������������������

���� ���������������������������������

�����������������
�����������

����������������
��������������

���������

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

AjaxWorld East Conference 2007 www.ajaxworldexpo.com 201-802-3022 51

AjaxWorld University Bootcamp www.ajaxworldbootcamp.sys-con.com 201-802-3022 49

 Altova www.altova.com 978-816-1600 4

 Backbase www.backbase.com/jsf 866-800-8996 21

 Business Objects www.businessobjects.com/devxi/misunderstood 11

 IBM ibm.com/takebackcontrol/flexible 7

 ICEsoft Technologies www.icesoft.com 877-263-3822 39

 Infragistics www.infragistics.com/jsf 800-231-8588 8-9

 Instantiations www.instantiations.com/rcpdeveloper/resources/casestudy-bea.pdf 32-33

 Java Developer’s Journal www.jdj.sys-con.com 888-303-5282 61

 Jinfonet Software www.jinfonet.com/live 240-477-1000 27

 Northwoods Software Corp. www.nwoods.com 800-434-9820 41

 OPNET Technologies, Inc. www.opnet.com/panorama 240-497-3000 13

 Parasoft Corporation www.parasoft.com/jdjmagazine 888-305-0041 Cover IV

 Quest Software www.quest.com/hero 949-754-8000 Cover II

 Recursion Software www.recursionsw.com 800-727-8674 29

 Software FX www.softwarefx.com 800-392-4278 Cover III

 TIBCO Software Inc. http://developer.tibco.com/ 800-420-8450 17

JDJ.SYS-CON.com62 December 2006

ongratulations go this year to IBM;
Oracle, HP; Fujitsu; Doug Lea, profes-
sor of computer science; Motorola;
Vodafone; Siemens; BenQ; Ericsson AB;

and Jean-Marie Dautelle, individual developer
and initiator of several open source projects.
The first four are now re-elected on the SE/EE
EC for another three-year term as a result of the
Ratification Ballot and the fifth as a result of the
Open Nominations/Election Ballot.
 Representing IBM on the EC, Mark Thomas
leads the development teams in providing IBM
software developer kits for Java technology. His
development experience includes graphics, win-
dowing systems, message queuing, computer-
aided telephony, voice response systems, and
Java technologies. Don Deutsch, who stands in
for Oracle on the EC and other standards boards,
is the 2002 recipient of the Edward Lohse Infor-
mation Technology Medal for his leadership of
national and international information technol-
ogy standardization. Scott Jameson, representing
Hewlett-Packard on the EC and other standards
organizations, is currently chairman of ISO/IEC
JTC 1, Information Technology. Masahiko Narita
of Fujitsu Limited serves as primary representa-
tive on the EC. He has actively promoted object
technology in the Japanese market.
 Doug Lea is professor at the computer science
department at the State University of New York
at Oswego. He authored and co-authored many
books and articles about Java and object-ori-
ented systems. Within the JCP, Doug was the
Spec Lead for JSR 166, Concurrency Utilities, and
has served as an Expert Group member on most
JSRs dealing with core Java SE for the past five
years.
 The runners up in the SE/EE open elections
stage were:
• Capgemini, a full-service IT provider, employs

thousands of Java developers. The company
joined the JCP community in 2004, served
actively on the Java EE 5 and Java SE 6 Expert
Groups, and supported the Java Portlet speci-
fication and the release of JBI.

• Tom Crosman follows Java technology very
closely – its history, current status, and future,
having worked full-time on Java since the
launch of JDK 1.0.1. He has commented on
JSRs and voted in JCP elections.

• Jean-Marie Dautelle is an individual devel-
oper with affiliations and contributions to

open source projects. More about Jean-Marie
as winner of the ME EC race.

• Justen M. Stepka worked with a team to devel-
op, market, and support the IDX sign-on and
identity management framework when he
was CEO of Authentisoft, recently purchased
by Atlassian. He is a contributing author for
O’Reilly and other popular publications and

 a speaker at JUGs and TheServerSide.com
conferences.

• Evan Summers is a Java developer working on
foundation classes to reuse in future projects
and applications, possibly involving Swing cli-
ents using RESTful Web services. He currently
participates in JSR 295, Beans Binding, and
JSR 296, Swing Application Framework.

• Mauro Do Valle was a JUG leader in Rio
Grande do Sul, Brazil, for the past four years,
doing many events and projects for the Java
Community. He joined the JCP program as an
individual three years ago.

 I’d like to thank all runners up for participating
in the 2006 elections and for their strong interest
in the JCP. The other members of the SE/EE are
Apache Software Foundation, BEA Systems,
Borland, Google, Intel, Nortel Networks, Red Hat
Middleware LLC, SAP, SAS Institute Inc., Hani
Suleiman, and Sun Microsystems. For informa-
tion on these representatives, go to http://jcp.
org/en/participation/committee.
 The other elects – Motorola, Vodafone, Sie-
mens, BenQ, Ericsson AB – are now representa-
tives on the ME EC for three-year terms, or in the
case of the second highest voted candidate on
the ME EC, Jean-Marie Dautelle, for two years
(more regarding EC terms in Q/A14 at http://
www.jcpelection2006.org/faq/).
 Motorola’s primary representative, James War-
den, has over 25 years of experience developing
software and system architecture for mobile and
embedded devices. He is the Maintenance Lead
for JSR 118, Mobile Information Device Profile
2.0, and has served on 10 other Expert Groups.
Guenter Klas, representing Vodafone, leads the
company’s terminal standardization program,
coordinates the efforts of Vodafone’s Spec Leads
and Experts, and through his team is involved
in standards organizations such as the W3C, the
Open Mobile Alliance, Global System for Mobile
Communications Association, and Open Mobile
Terminal Platform. Siemens AG is represented on

the ME EC by Lothar Borrmann, who leads the
Software Architecture department in assisting
and advising Siemens’ Groups regarding software
architecture issues, innovations, and trends,
including software platform technologies such as
the Java technology. At the time of writing, BenQ
Corporation is still in the process of appointing a
primary representative.
 Ericsson AB and Jean-Marie Dautelle came
out the winners of the open nomination. Magnus
Olsson of Ericsson Mobile Platforms represented
Ericsson AB on the ME EC before. He worked
with mobile telephony (GSM) infrastructure
development, mobile terminals, and Ericsson
Mobile Platforms (EMP) incorporating Java
ME technology into the applications domain
– system design, protocols, testing, and applica-
tion development. Jean-Marie Dautelle is Java SE
5.0 Certified, the initiator and primary developer
of two popular open source projects: Javolution
(http://javolution.org) and JScience (http://
jscience.org). JScience provides the current Refer-
ence Implementation for the Expert Group Jean-
Marie serves on – JSR 275, Units Specification.
 And the runner up in the ME EC open nomi-
nations race was SiRF. By many accounts SiRF is
among the fastest-growing companies in Silicon
Valley and among market leaders in location
technologies and video for mobile handsets.
Within the JCP community, SiRF has actively
participated in JSR 293, Location API 2.0; JSR 281,
IMS Services API; and JSR 298, Telematics API for
Java ME.
 I’d like to thank SiRF for participating in the
open nominations for the JCP ME EC. The other
members on the ME EC are IBM, Intel, Nokia,
NTT DoCoMo, Orange France, Philips, Research
In Motion, Samsung, Sony Ericsson, and Sun
Microsystems.
 More details about the ECs’ members and
their Java technology and community expertise
are posted on jcp.org at http://jcp.org/en/press/
news/ec-feature_SE091206 for SE/EE EC and
at http://jcp.org/en/press/news/ec-feature_
ME091206 for ME EC.
 For a stage-by-stage navigation of the 2006 JCP
EC elections results, go to the official JCP Elec-
tions page hosted by PricewaterhouseCoopers at
http://www.jcpelection2006.org/jcp/overview.
 Join me in congratulating the newly elected
and returning EC members and in wishing them
a successful term ahead.

JSR Watch

Onno Kluyt

The 2006 JCP EC Elections Are Over

C

Onno Kluyt is the

director of the

JCP Program at

Sun Microsystems

and Chair of

the JCP.

onno@jcp.org

Meet the newly elected and re-elected members

��

��

��

��

�������
������������������
�����������������
�������������

������� ��

����������������
��������������

������������������
��������������
�������������

����� ��

��������������
�����������
�������������

�������������������

������� ��

��������������
������������

������
�����������������

��������

����������

����������������
���������������
���������������

�����������
�����������������

����� ��

��������
�����������
�������������

���������

��

	Untitled
	Untitled

